精英家教网 > 高中数学 > 题目详情
已知平面α,β所成的二面角为80°,P为α,β外一定点,则过点P作直线与α,β都成30°的直线有(  )
A、1条B、2条C、3条D、4条
考点:空间中直线与直线之间的位置关系
专题:空间位置关系与距离
分析:过P作平面A垂直于α、β的交线l,并且交l于点0,连接PO,则PO垂直于l,过点P在A内做OP的垂线L',以PO为轴在垂直于PO的平面内转动L',根据三垂线定理可得有两条直线满足题意.以P点为轴在平面A内前后转动L',根据三垂线定理可得也有两条直线满足题意.
解答: 解:首先给出下面两个结论
①两条平行线与同一个平面所成的角相等.
②与二面角的两个面成等角的直线在二面角的平分面上.
图1.
(1)如图1,过二面角α-l-β内任一点作棱l的垂面AOB,交棱于点O,与两半平面于OA,OB,则∠AOB为二面角α-l-β的平面角,∠AOB=80°
设OP1为∠AOB的平分线,则∠P1OA=∠P1OB=40°,与平面α,β所成的角都是30°,此时过P且与OP1平行的直线符合要求,当OP1以O为轴心,在二面角α-l-β的平分面上转动时,OP1与两平面夹角变小,会对称的出现两条符合要求成30°情形.
图2.
(2)如图2,设OP2为∠AOB的补角∠AOB′的平分线,则∠P2OA=∠P2OB=50°,与平面α,β所成的角都是50°.当OP2以O为轴心,在二面角α-l-β′的平分面上转动时,
OP2与两平面夹角变小,对称地在图中OP2两侧会出现30°情形,有两条.此时过P且与OP2平行的直线符合要求,有两条.
综上所述,直线的条数共有4条.
故选:D.
点评:本题主要考查线面角,以及考查解决线面角的特殊方法的应用,考查空间想象能力,体现了转化的思想和运动变化的思想方法,此题是个难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

写出下列算法的结果.
输入a,b,c
If  a2+b2=c2 Then
输出“是直角三角形!”
Else
输出“非直角三角形!”
End   If
运行时输入5,12,13
运行结果为输出
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的可导函数f(x),当x∈(1,+∞)时,(x-1)f′(x)-f(x)>0恒成立,若a=f(2),b=
1
2
f(3),c=(
2
+1)f(
2
),则a,b,c的大小关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若两个平面互相平行,则分别在这两个平行平面内的两条直线(  )
A、平行B、异面
C、相交D、平行或异面

查看答案和解析>>

科目:高中数学 来源: 题型:

若某程序图如图所示,则该程序运行后输出的k的值是(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

设a是实数,则“a=1”是“a2=1”的(  )
A、充分而不必要条件
B、必要而不必要条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

一个样本数据按从小到大的顺序排列为:13,14,19,x,23,27,28,32,其中,中位数是22,则x等于(  )
A、21B、22C、23D、24

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-2x36,则f′(1)等于(  )
A、0B、-6C、-36D、36

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角三角形ABC的外接圆的圆心为O,半径为R,已知∠A=30°且
AB
|AB|
cosB+
AC
|AC|
cosC=
m
R
AO
,则m=(  )
A、-
3
2
B、
3
C、2
D、
1
2

查看答案和解析>>

同步练习册答案