精英家教网 > 高中数学 > 题目详情
11.如图,△O′A′B′是水平放置的△ABC的直观图,则△ABC的周长为10+2$\sqrt{13}$.

分析 根据直观图画出△ABC的图形,计算周长即可.

解答 解:根据直观图画出△ABC的图形,如图所示;

则△ABC的周长为
l=BC+AC+AB=4+6+$\sqrt{{4}^{2}{+6}^{2}}$=10+2$\sqrt{13}$.
故答案为:10+2$\sqrt{13}$.

点评 本题考查了平面直观图的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据如表:根据表中数据得到${K^2}=\frac{{775×{{(20×450-5×300)}^2}}}{25×750×320×455}$≈15.968,因为K2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为(  )
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
A.0.1B.0.05C.0.01D.0.001

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知定义域为R的函数f(x)=$\frac{-{2}^{x}+b}{{2}^{x+1}+a}$是奇函数.
(1)求a,b的值;
(2)证明:对任意实数x,m,不等式f(x)<m2-3m+3恒成立;
(3)试判断是否存在正数q,使函数g(x)=1+q(f(x)+$\frac{1}{2}$)在区间[0,2]上的值域为[$\frac{7}{5}$,2],若存在,求出正数q;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
喜欢甜品不喜欢甜品合 计
南方学生602080
北方学生101020
合 计7030100
根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
P(K2≥k00.1000.0500.010
k02.7063.8416.635
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的框图,若输出的sum的值为2047,则条件框中应填写的是(  )
A.i<9?B.i<10?C.i<11?D.i<12?
2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若0≤x≤2,$y=\frac{1}{2}×{4^x}-3×{2^x}+5$,求y的最大值与最小值以及相对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知a>0,函数$f(x)=a{x^3}+\frac{12}{a}lnx$,则f'(1)的最小值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若圆x2+y2-2x-4ay+1=0截直线l:x-y-1=0所得弦长为2$\sqrt{2}$,则圆的面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.假设小明家订了一份报纸,送报人可能在早上x(6≤x≤8)点把报纸送到小明家,小明每天离家去工作的时间是在早上y(7≤y≤9)点,记小明离家前不能看到报纸为事件M.
(1)若送报人在早上的整点把报纸送到小明家,而小明又是早上整点离家去工作,求事件M的概率;
(2)若送报人在早上的任意时刻把报纸送到小明家,而小明也是早上任意时刻离家去工作,求事件M的概率.

查看答案和解析>>

同步练习册答案