精英家教网 > 高中数学 > 题目详情
求函数y=-x3-2x2-4x+5的单调区间.
考点:利用导数研究函数的单调性
专题:计算题,导数的综合应用
分析:求出函数的导数,求出判别式,即可判断函数的单调性.
解答: 解:函数y=-x3-2x2-4x+5的导数为
y′=-3x2-4x-4,
由于判别式△=16-4×12<0,
则y′<0恒成立,
则函数在R上递减,
即只有减区间为(-∞,+∞).
点评:本题考查导数的运用:求单调区间,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在(2,+∞)上是减函数,求a取值范围,使f(a2-2)-f(2-3a)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4px(p>0)上的动点M到定点A(1,0)的距离|MA|达到最小值时点M的位置记为M′,且|M′A|<1,(1)求p的取值范围 
(2)求点M′的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为△ABC所在平面内一点,且满足
AP
=
1
3
AC
+
2
3
AB
,则△APB的面积与△APC的面积之比为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+cosα=
1
5
,α∈(0,π),则
1
tanα
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

平面向量中从集合A到A的映射f由f(x)=x-2(x•
a
)•
a
确定,其中
a
为常向量,若映射f满足f(x)•f(y)=x•y,对x,y∈A恒成立,则|
a
|=(  )
A、1
B、2
C、
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<
π
2
)的图象如图所示,为了得到g(x)=sin2x的图象,则只要将f(x)的图象(  )
A、向右平移
π
6
个单位长度
B、向右平移
π
12
个单位长度
C、向左平移
π
6
个单位长度
D、向左平移
π
12
个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,对称轴为坐标轴,焦点在x轴上,有一个顶点为A(-4,0),椭圆两准线间的距离为16.
(Ⅰ)求椭圆C的方程:
(Ⅱ)过点B(-1,0)作直线l与椭圆C交于E,F两点,线段EF的中点为M,求直线MA的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,当x<0时,0<f(x)<1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)
(1)求f(0); 
(2)试判断函数f(x)在(-∞,0]上是否存在最大值,若存在,求出该最大值,若不存在说明理由;
(3)设数列{an}各项都是正数,且满足a1=f(0),f(an+12-an2)=
1
f(an+1-3an-2)
,(n∈N*),又设bn=(
1
2
 an,Sn=b1+b2+…+bn,Tn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,试比较Sn与 Tn的大小.

查看答案和解析>>

同步练习册答案