精英家教网 > 高中数学 > 题目详情
9.设集合U={-3,-2,-1,0,1,2,3},集合A={-1,0,1},那么∁UA={-3,-2,2,3}.

分析 根据集合A,以及全集U,求出A的补集即可.

解答 解:集合U={-3,-2,-1,0,1,2,3},集合A={-1,0,1},那么∁UA={-3,-2,2,3},
故答案为:{-3,-2,2,3}.

点评 此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$a,曲线C2的参数方程为$\left\{\begin{array}{l}{x=-1+cosθ}\\{y=-1+sinθ}\end{array}\right.$(θ为参数).
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)当C1与C2有两个公共点时,求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.有下列结论:
①y=2014$\sqrt{x-3}$+$\sqrt{2-x}$是函数;      
②设集合M={(x,y)|${\frac{y+2}{x-2}$=1},N={(x,y)|ax+y+2=0},若M∩N=∅,则a=-1;
③函数f(x)满足f(x)-2f($\frac{1}{x}$)=x,则f(2)=-1;
④不等式(x-5)2$\frac{{{x^2}-7x+12}}{{-|x-2{|^2}}}$≥0的解集为{x|3≤x≤4};
⑤函数y=$\frac{3x-2}{2x+1}$(x≥1)的值域为[$\frac{1}{3},\frac{3}{2}$).
以上结论正确的有③⑤(将所有正确的结论序号填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.焦点是(0,±2),且与双曲线$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1有相同渐近线的双曲线的方程是(  )
A.x2-$\frac{{y}^{2}}{3}$=1B.y2-$\frac{{x}^{2}}{3}$=1C.x2-y2=2D.y2-x2=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{{\begin{array}{l}{3x-1,x<0}\\{{3^x},x>0}\end{array}}$,那么f(2)的值是(  )
A.9B.8C.7D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{x}$.
(1)证明f(x)在[2,6]上为减函数;
(2)求f(x)在[2,6]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设数列{an}为等差数列,其前n项和为Sn,已知a1+a4+a10=27,则a5=9,S9=81.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.“a=b”是“2a=2b”的充要条件.(从“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中选择适当的一种填空)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设l,m,n是三条不同的直线,α,β,γ是三个不同的平面,则下列判断正确的是(  )
A.若l⊥m,m⊥n,则l∥nB.若α⊥β,β⊥γ,则α∥γC.若m⊥α,α⊥β,则m∥βD.若m⊥α,m∥β,则α⊥β

查看答案和解析>>

同步练习册答案