精英家教网 > 高中数学 > 题目详情
5.2016年春晚过后,为了研究演员上春晚次数与受关注度的关系,某网站对其中一位经常上春晚的演员上春晚次数与受关注度进行了统计,得到如下数据:
上春晚次数x(单位:次)246810
粉丝数量y(单位:万人)1525507090
(Ⅰ)若该演员的粉丝数量y与上春晚次数x满足线性回归方程,试求回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)根据以上数据分析,估计该演员上春晚12次时的粉丝数量.

分析 (I)根据数据计算线性回归系数,得出回归方程;
(II)把x=12代入回归方程计算$\stackrel{∧}{y}$.

解答 解:(I)$\overline x=\frac{1}{5}(2+4+6+8+10)=6$,$\overline y=\frac{1}{5}(15+25+50+70+90)=50$,
$\sum_{i=1}^5{x_i}{y_i}=1890$,$\sum_{i=1}^5{{x_i}^2}=220$,
∴$\stackrel{∧}{b}$=$\frac{1890-5×6×50}{220-5×{6}^{2}}$=9.75,$\stackrel{∧}{a}$=50-9.75×6=-8.5.
因此回归直线方程为$\stackrel{∧}{y}$=9.75x-8.5.
(II)当x=12时,$\stackrel{∧}{y}$=9.75×12-8.5=108.5
∴该演员上春晚12次时的粉丝数约为108.5万人.

点评 本题考查了线性回归方程的求解及利用回归方程进行预测,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.一艘向正东航行的船,看见正北方向有两个相距10海里的灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的北偏西30°,另一灯塔在船的北偏西15°,则这艘船的速度是每小时(  )
A.5海里B.$5\sqrt{3}$海里C.10海里D.$10\sqrt{3}$海里

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=$\frac{1}{2}$x+2,则函数g(x)=xf(x)在点N(1,g(1))处的切线方程为(  )
A.6x-2y-1=0B.3x-2y+2=0C.3x+y-5=0D.6x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.通过市场调查,得到某种产品的资金投入x(万元)与获得的利润y(万元)的数据,如表所示:
资金投入x23456
利润y23569
(Ⅰ)画出数据对应的散点图;
(Ⅱ)根据上表提供的数据,用最小二乘法求线性回归直线方程$\stackrel{∧}{y}$=bx+a;
(Ⅲ)现投入资金10万元,求获得利润的估计值为多少万元?
(参考公式:$\left\{\begin{array}{l}{\stackrel{∧}{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}(x-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{a}=\stackrel{∧}{y}-b\stackrel{∧}{x}}\end{array}\right.$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-x3+3x2+9x+1.
(1)求f(x)的单调递减区间;
(2)求f(x)在点(-2,f(-2))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如表:(单位:人)
几何题代数题总计
男同学22830
女同学81220
总计302050
(Ⅰ)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(Ⅱ)经过多次测试后,甲每次解答一道几何题所用的时间在5-7分钟,乙每次解答一道几何题所用的时间在6-8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(Ⅲ)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为X,求X的分布列及数学期望E(X).
附表及公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如表提供了某厂生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:
x246810
y565910
(Ⅰ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)根据(1)求出的线性回归方程,预测生产20吨甲产品的生产能耗是多少吨标准煤?
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,参考数值:2×5+4×6+6×5+8×9+10×10=236)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,AB=2,BC=3$\sqrt{3}$,∠ABC=30°,AD为BC边上的高,若$\overrightarrow{AD}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,则$\frac{λ}{μ}$等于(  )
A.2B.$\frac{1}{2}$C.$\frac{2}{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=ax-$\frac{b}{x}$,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0,则实数a,b的值为(  )
A.a=1,b=3B.a=3,b=1C.a=$\frac{23}{56}$,b=$\frac{9}{14}$D.a=$\frac{11}{8}$,b=$\frac{3}{2}$

查看答案和解析>>

同步练习册答案