精英家教网 > 高中数学 > 题目详情
10.心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如表:(单位:人)
几何题代数题总计
男同学22830
女同学81220
总计302050
(Ⅰ)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(Ⅱ)经过多次测试后,甲每次解答一道几何题所用的时间在5-7分钟,乙每次解答一道几何题所用的时间在6-8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(Ⅲ)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为X,求X的分布列及数学期望E(X).
附表及公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (1)计算K2,对照附表做结论;
(2)作出甲,乙两人解答时间的平面区域,找出乙比甲早做完对于的区域,则区域面积的比值即为所求概率;
(3)使用组合数公式和古典概型的概率计算公式分别计算X取不同值时的概率,得到X的分布列,求出数学期望.

解答 解:(1)由表中数据得K2的观测值K2=$\frac{50(22×12-8×8)^{2}}{30×20×30×20}$=$\frac{50}{9}≈5.556$>5.024.
所以根据统计有97.5%的把握认为视觉和空间能力与性别有关.
(2)设甲、乙解答一道几何题的时间分别为x,y分钟,
则基本事件满足的区域为$\left\{\begin{array}{l}{5≤x≤7}\\{6≤y≤8}\end{array}\right.$(如图所示).

设事件A为“乙比甲先做完此道题”
则满足的区域为x>y.
∴P(A)=$\frac{\frac{1}{2}×1×1}{2×2}$=$\frac{1}{8}$
即乙比甲先解答完的概率为$\frac{1}{8}$.
(3)在选择做几何题的8名女生中任意抽取两人,抽取方法有${C}_{8}^{2}$=28 种,
其中甲、乙两人都不被被抽到有${C}_{6}^{2}$=15种;恰有一人被抽到有${C}_{2}^{1}$•${C}_{6}^{1}$=12种;两人都被抽到有${C}_{2}^{2}$=1种.
X可能取值为0,1,2,
P(X=0)=$\frac{15}{28}$,P(X=1)=$\frac{12}{28}=\frac{3}{7}$,P(X=2)=$\frac{1}{28}$.
X的分布列为:

X012
P$\frac{15}{28}$$\frac{3}{7}$$\frac{1}{28}$
∴E(X)=0×$\frac{15}{28}$+1×$\frac{3}{7}$+2×$\frac{1}{28}$=$\frac{1}{2}$.

点评 本题考查了独立性检验的统计思想,几何概型的概率计算,离散性随机变量的分布列和数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.将正整数1,2,3,4…排列成阵(如图),在2处转第一个弯,在3处转第二个弯,在5处转第三个弯,…则第2016个转弯处的数为(  )
A.1006010B.1006110C.1017073D.1017072

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,气象部门预报,在海面上生成了一股较强台风,在据台风中心60千米的圆形区域内将受到严重破坏,台风中心这个从海岸M点登陆,并以72千米/小时的速度沿北偏西60°的方向移动,已知M点位于A城的南偏东15°方向,距A城$61\sqrt{2}$千米;M点位于B城的正东方向,距B城$60\sqrt{3}$千米,假设台风在移动的过程中,其风力和方向保持不变,请回答下列问题:
(1)A城和B城是否会受到此次台风的侵袭?并说明理由;
(2)若受到此次台风的侵袭,改城受到台风侵袭的持续时间有多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.100件产品中有3件次品,不放回地抽取2次,每次抽1件.已知第1次抽出的是次品,则第2次抽出正品的概率是$\frac{97}{99}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2016年春晚过后,为了研究演员上春晚次数与受关注度的关系,某网站对其中一位经常上春晚的演员上春晚次数与受关注度进行了统计,得到如下数据:
上春晚次数x(单位:次)246810
粉丝数量y(单位:万人)1525507090
(Ⅰ)若该演员的粉丝数量y与上春晚次数x满足线性回归方程,试求回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)根据以上数据分析,估计该演员上春晚12次时的粉丝数量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某班主任对班级51名同学进行了作业量多少的调查,结合数据建立了一个2×2列联表:
认为作业多认为作业不多总计
喜欢玩电脑游戏181230
不喜欢玩电脑游戏51621
总计232851
(可能用到的公式:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}n_{+1}n_{+2}}$,可能用到的数据:P(X2≥6.635)=0.01,P(X2≥3.841)=0.05)参照以上公式和数据,得到的正确结论是(  )
A.有95%的把握认为喜欢玩电脑游戏与认为作业多少有关
B.有95%的把握认为喜欢玩电脑游戏与认为作业多少无关
C.有99%的把握认为喜欢玩电脑游戏与认为作业多少有关
D.有99%的把握认为喜欢玩电脑游戏与认为作业多少无关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.从某种设备中随机抽取5个,获得使用年限 xi(年)与所支出的修理费用 yi(万元)的数据资料,算得
$\sum_{i=1}^{5}$xi=20,$\sum_{i=1}^{5}$yi=25,$\sum_{i=1}^{5}$xiyi=112.3,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=90
(1)求回归方程$\widehat{y}$=bx+a;
(2)判断变量 x与 y之间是正相关还是负相关;
(3)估计使用年限为10年时维修费用是多少.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-bx
其中$\overline{x}$,$\overline{y}$为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,海上有A,B两个小岛相距10km,船O将保持观望A岛和B岛所成的视角为60°,现从船O上派下一只小艇沿BO方向驶至C处进行作业,且OC=BO.设AC=10$\sqrt{3}$km,则OA2+OB2=200.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.现安排甲、乙、丙、丁、戊5名同学参加课外兴趣活动,要求每人参加体育、音乐、美术、科技制作四项中的一项,每项兴趣活动至少有一人参加,甲、乙不想参加体育兴趣活动,其他同学四项兴趣活动都愿意参加,则不同安排方案的种数是(  )
A.152种B.54种C.90种D.126种

查看答案和解析>>

同步练习册答案