精英家教网 > 高中数学 > 题目详情
20.将正整数1,2,3,4…排列成阵(如图),在2处转第一个弯,在3处转第二个弯,在5处转第三个弯,…则第2016个转弯处的数为(  )
A.1006010B.1006110C.1017073D.1017072

分析 观察由1起每一个转弯时递增的数字可发现为“1,1,2,2,3,3,4,4,…”.由此能求出在第2016个转弯处的数.

解答 :观察由1起每一个转弯时递增的数字,
可发现为“1,1,2,2,3,3,4,4,…”,
即第一、二个转弯时递增的数字都是1,
第三、四个转弯时递增的数字都是2,
第五、六个转弯时递增的数字都是3,
第七、八个转弯时递增的数字都是4,

故在第2016个转弯处的数为:
1+2(1+2+3+…+1008)
=1+2×$\frac{1008(1+1008)}{2}$
=1017073.
故选:C

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.如图,设三棱柱ABC-A1B1C1的体积为2,P、Q分别是侧棱AA1、CC1上的点,且AP=QC1,则四棱锥B-APQC的体积为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1
(2)求证:AC1∥平面CDB1
(3)求直线DB1与平面BCC1B1所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.观察下列等式
l+2+3+…+n=$\frac{1}{2}$n(n+l);
l+3+6+…+$\frac{1}{2}$n(n+1)=$\frac{1}{6}$n(n+1)(n+2);
1+4+10+…$\frac{1}{6}$n(n+1)(n+2)=$\frac{1}{24}$n(n+1)(n+2)(n+3);
可以推测,1+5+15+…+$\frac{1}{24}$n(n+1)(n+2)(n+3)=$\frac{1}{120}$n(n+1)(n+2)(n+3)(n+4),(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一艘向正东航行的船,看见正北方向有两个相距10海里的灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的北偏西30°,另一灯塔在船的北偏西15°,则这艘船的速度是每小时(  )
A.5海里B.$5\sqrt{3}$海里C.10海里D.$10\sqrt{3}$海里

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD与底面成30°角.
(1)若AE⊥PD,E为垂足,求证:BE⊥PD;
(2)在(1)的条件下,求直线PC与平面ABE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.y与x之间的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$必定过(  )
A.(0,0)点B.($\overline{x}$,$\overline{y}$)点C.(0,$\overline{y}$)点D.($\overline{x}$,0)点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对大于或等于2的自然数的3次方可以做如下分解:23=3+5,33=7+9+11,43=13+15+17+19,…,根据上述规律,103的分解式中,最大的数是109.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如表:(单位:人)
几何题代数题总计
男同学22830
女同学81220
总计302050
(Ⅰ)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(Ⅱ)经过多次测试后,甲每次解答一道几何题所用的时间在5-7分钟,乙每次解答一道几何题所用的时间在6-8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(Ⅲ)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为X,求X的分布列及数学期望E(X).
附表及公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案