精英家教网 > 高中数学 > 题目详情
13.(1)已知sin(2α+β)=3sinβ,求证:tan(α+β)=2tanα
(2)证明:$\frac{sin2α+β}{sinα}$-2cos(α+β)=$\frac{sinβ}{sinα}$.

分析 (1)把已知等式左边的角β变为(α+β)-α,右边的角2α+β变为(α+β)+α,然后左右两边分别利用两角和与差的正弦函数公式化简,移项合并后,在等式两边同时除以cosαcos(α+β),利用同角三角函数间的基本关系变形可得证.
(2)将第一项分子2α+β转化为α+(α+β),利用两角和差公式展开,通分后,即可证明左边等于右边,从而得证.

解答 (1)证明:将条件化为:3sin[(α+β)-α]=sin[(α+β)+α],
展开得:3sin(α+β)cosα-3cos(α+β)sinα
=sin(α+β)cosα+cos(α+β)sinα,即:2sin(α+β)cosα=4cos(α+β)sinα,
由cos(α+β)cosα≠0,两边同除以cos(α+β)cosα,
可得:tan(α+β)=2tanα.
(2)证明:左边=$\frac{sin2α+β}{sinα}$-2cos(α+β)=$\frac{sinαcos(α+β)+cosαsin(α+β)-2sinαcos(α+β)}{sinα}$=$\frac{sin[(α+β)-α]}{sinα}$=$\frac{sinβ}{sinα}$=右边.
从而得证.

点评 此题考查了三角函数的恒等式的证明,用到的知识有:两角和与差的正弦函数公式,以及同角三角函数间的基本关系,把已知等式左右两边的角度灵活变换是本题的突破点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边分别为a,b,c,求证:$\frac{a+b}{c}$=$\frac{cos\frac{A-B}{2}}{sin\frac{C}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=-1,b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给定的下列四个式子中,①x-2y=2;②2x2-3y=1;③x-y2=1;④2x2-y2=4.其中,能表示y是x的函数的是(  )
A.①②B.①③C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x2-2(a-1)x+2在区间(-∞,3]上是单调减函数,则实数a的取值范围是[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=x2-x,x∈[-2,2)的值域是[-$\frac{1}{4}$,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的通项公式是an=$\frac{{n}^{2}}{{n}^{2}+1}$,n∈N*
(1)写出该数列的第4项和第7项;
(2)试判断$\frac{9}{10}$和$\frac{1}{10}$是否是该数列中的项,若是,求出它是第几项,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等差数列,求:
(1)d,a10
(2)|a1|+|a2|+…+|a10|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知α:集合A={x|2a<x≤4},B={x|2≤x≤3a+1},β:B?A,若α⇒β,求实数a的取值范围.

查看答案和解析>>

同步练习册答案