精英家教网 > 高中数学 > 题目详情
19.(1)已知sin(θ+$\frac{π}{4}$)=$\frac{1}{3}$,θ∈($\frac{π}{2}$,π),求sinθ;
(2)已知cos(α+β)=$\frac{1}{3}$,tanα•tanβ=$\frac{1}{3}$,求cos(α-β)的值.

分析 (1)由已知可求范围$θ+\frac{π}{4}∈(\frac{3π}{4},\frac{5π}{4})$,利用同角三角函数基本关系式可求所以cos(θ+$\frac{π}{4}$),利用两角差的正弦函数公式及特殊角的三角函数值即可计算得解.
(2)由已知及两角和的余弦函数公式,同角三角函数基本关系式可得$cosαcosβ-sinαsinβ=\frac{1}{3}$,$sinαsinβ=\frac{1}{3}cosαcosβ$,联立可解得$cosαcosβ=\frac{1}{2}$,进而利用两角差的余弦函数公式即可得解.

解答 (本题满分为14分)
解:(1)因为$θ∈(\frac{π}{2},π)$,
所以$θ+\frac{π}{4}∈(\frac{3π}{4},\frac{5π}{4})$,…(2分)
所以$cos(θ+\frac{π}{4})=-\sqrt{1-{{sin}^2}(θ+\frac{π}{4})}=-\frac{{2\sqrt{2}}}{3}$,…(4分)
所以$sinθ=sin[(θ+\frac{π}{4})-\frac{π}{4}]=sin(θ+\frac{π}{4})cos\frac{π}{4}-cos(θ+\frac{π}{4})sin\frac{π}{4}=\frac{{4+\sqrt{2}}}{6}$.
(2)由$cos(α+β)=\frac{1}{3}$,得:$cosαcosβ-sinαsinβ=\frac{1}{3}$,①
由$tanα•tanβ=\frac{1}{3}$,得:$\frac{sinαsinβ}{cosαcosβ}=\frac{1}{3}$,即$sinαsinβ=\frac{1}{3}cosαcosβ$,②
由①、②得$cosαcosβ=\frac{1}{2}$,
所以$cos(α-β)=cosαcosβ+sinαsinβ=\frac{4}{3}cosαcosβ=\frac{2}{3}$.…(14分)

点评 本题主要考查了同角三角函数基本关系式,两角和与差的正弦函数、余弦函数公式及特殊角的三角函数值在三角函数化简求值中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=ex-ax-2
(1)求f(x)的单调区间;
(2)若a=1,k为整数,且当x>0时,$\frac{k-x}{x+1}$f'(x)<1恒成立,其中f'(x)为f(x)的导函数,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合M={-2,0,2,4},N={x|x2<9},则M∩N=(  )
A.{0,2}B.{-2,0,2}C.{0,2,4}D.{-2,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知椭圆C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{3}$=1,直线l:y=kx-2与椭圆C交于A,B两点,点P(0,1),且|PA|=|PB|,则直线l的方程为x-y-2=0或x+y+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=-x2+1B.y=lg|x|C.$y=\frac{1}{x}$D.y=e-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a+b=2,b>0,当$\frac{1}{2|a|}$+$\frac{|a|}{b}$取得最小值时,a的值为(  )
A.-3B.-2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合M={大于0小于1的有理数},
N={小于1050的正整数},
P={定圆C的内接三角形},
Q={所有能被7整除的数},
其中无限集是(  )
A.M、N、PB.M、P、QC.N、P、QD.M、N、Q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1=2,AC⊥BC,点D是AB的中点.
(1)求证:AC1∥平面 CDB1
(2)求三棱锥的体积${V_{B-{B_1}CD}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.动点P从边长为1的正方形ABCD的顶点A出发顺次经过B,C,D再回到A,设x表示P点的行程,f(x)表示PA的长,g(x)表示△ABP的面积.
(1)求f(x)的表达式;
(2)求g(x)的表达式并作出g(x)的简图.

查看答案和解析>>

同步练习册答案