精英家教网 > 高中数学 > 题目详情
下列对应关系f中,不是从集合A到集合B的映射的是(   )
A.A=,B=(0,1),f:求正弦;
B.A=R,B=R,f:取绝对值
C.A=,B=R,f:求平方;
D.A=R,B=R,f:取倒数
D

试题分析:映射要求对于集合A中的任意一个元素,按照对应法则,在到集合B中,都能找到唯一一个元素与之对应。
对于A,因为,锐角的正弦属于区间(0,1),集合A中任意一个元素,在B中都有唯一一个元素与之对应,是映射;
对于B,任意实数的绝对值,都有唯一一个非负实数与之对应,是映射;
对于C,任意正实数的平方,都有唯一一个正实数与之对应,是映射;
对于D,实数0没有倒数,表示映射。故选D。
点评:简单题,利用映射的定义,结合简单运算加以判断。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数的定义域为
(1)求
(2)当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某单位设计的两种密封玻璃窗如图所示:图1是单层玻璃,厚度为8 mm;图2是双层中空玻璃,厚度均为4 mm,中间留有厚度为的空气隔层.根据热传导知识,对于厚度为的均匀介质,两侧的温度差为,单位时间内,在单位面积上通过的热量,其中为热传导系数.假定单位时间内,在单位面积上通过每一层玻璃及空气隔层的热量相等.(注:玻璃的热传导系数为,空气的热传导系数为.)
(1)设室内,室外温度均分别为,内层玻璃外侧温度为,外层玻璃内侧温度为,且.试分别求出单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量(结果用表示);
(2)为使双层中空玻璃单位时间内,在单位面积上通过的热量只有单层玻璃的4%,应如何设计的大小?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)=(x+1)(x+2)(x+3)…(x+n),(n≥2,n∈N),其导函数为f′(x),,则a100=    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的所有零点之和等于(  )
A.B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(5分)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2﹣4x,那么,不等式f(x+2)<5的解集是   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)若x=时,取得极值,求的值;
(2)若在其定义域内为增函数,求的取值范围;
(3)设,当=-1时,证明在其定义域内恒成立,并证明).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数
(1)记集合,则所对应的的零点的取值集合为____。
(2)若           .(写出所有正确结论的序号)


③若

查看答案和解析>>

同步练习册答案