5£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÁ½½¹µã·Ö±ðΪF1£¨-$\sqrt{3}$£¬0£©£¬F2£¨$\sqrt{3}$£¬0£©£¬ÇÒ¾­¹ýµã£¨$\sqrt{3}$£¬$\frac{1}{2}$£©£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì¼°ÀëÐÄÂÊ£»
£¨2£©ÉèµãB£¬C£¬DÊÇÍÖÔ²Éϲ»Í¬ÓÚÍÖÔ²¶¥µãµÄÈýµã£¬µãBÓëµãD¹ØÓÚÔ­µãO¶Ô³Æ£®ÉèÖ±ÏßCD£¬CB£¬OB£¬OCµÄбÂÊ·Ö±ðΪk1£¬k2£¬k3£¬k4£¬ÇÒk1k2=k3k4£®
¢ÙÇók1k2µÄÖµ£»
¢ÚÇóOB2+OC2µÄÖµ£®

·ÖÎö £¨1£©ÒÀÌâÒ⣬c=$\sqrt{3}$£¬a2=b2+3£¬£¨$\sqrt{3}$£¬$\frac{1}{2}$£©´úÈëÍÖÔ²·½³Ì£¬Çó³öa£¬b£¬¼´¿ÉÇóÍÖÔ²µÄ·½³Ì¼°ÀëÐÄÂÊ£»
£¨2£©¢ÙÀûÓÃбÂʹ«Ê½£¬¼´¿ÉÇók1k2µÄÖµ£»
¢ÚÓÉ¢ÙÖª£¬k3k4=k1k2=$-\frac{1}{4}$£¬¹Êx1x2=-4y1y2£®ÀûÓÃOB2+OC2=$x_1^2+y_1^2+x_2^2+y_2^2$£¬ÇóOB2+OC2µÄÖµ£®

½â´ð ½â£º£¨1£©ÒÀÌâÒ⣬c=$\sqrt{3}$£¬a2=b2+3£¬¡­2·Ö
ÓÉ$\frac{3}{{{b^2}+3}}+\frac{{\frac{1}{4}}}{b^2}=1$£¬½âµÃb2=1£¨b2=$-\frac{3}{4}$£¬²»ºÏ£¬ÉáÈ¥£©£¬´Ó¶øa2=4£®
¹ÊËùÇóÍÖÔ²·½³ÌΪ£º$\frac{x^2}{4}+{y^2}=1$£¬ÀëÐÄÂÊe=$\frac{{\sqrt{3}}}{2}$£®¡­5·Ö
£¨2£©¢ÙÉèB£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬ÔòD£¨-x1£¬-y1£©£¬
ÓÚÊÇk1k2=$\frac{{{y_2}-{y_1}}}{{{x_2}-{x_1}}}•\frac{{{y_2}+{y_1}}}{{{x_2}+{x_1}}}$=$\frac{{£¨1-\frac{x_2^2}{4}£©-£¨1-\frac{x_1^2}{4}£©}}{x_2^2-x_1^2}$=$-\frac{1}{4}$£®¡­8·Ö
¢ÚÓÉ¢ÙÖª£¬k3k4=k1k2=$-\frac{1}{4}$£¬¹Êx1x2=-4y1y2£®
ËùÒÔ£¨x1x2£©2=£¨-4y1y2£©2£¬¼´£¨x1x2£©2=$16£¨1-\frac{x_1^2}{4}£©£¨1-\frac{x_2^2}{4}£©$=$16-4£¨x_1^2+x_2^2£©+x_1^2x_2^2$£¬
ËùÒÔ£¬$x_1^2+x_2^2$=4£®¡­11·Ö
ÓÖ2=$£¨\frac{x_1^2}{4}+y_1^2£©+£¨\frac{x_2^2}{4}+y_2^2£©$=$\frac{x_1^2+x_2^2}{4}+y_1^2+y_2^2$£¬¹Ê$y_1^2+y_2^2=1$£®
ËùÒÔ£¬OB2+OC2=$x_1^2+y_1^2+x_2^2+y_2^2$=5£®¡­14·Ö

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌÓëÐÔÖÊ£¬¿¼²éбÂʹ«Ê½µÄÔËÓ㬿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÔÚÈçͼËùʾµÄ¼¸ºÎÌåÖУ¬ËıßÐÎABCDΪÕý·½ÐΣ¬PA¡ÍÆ½ÃæABCD£¬PA¡ÎBE£¬AB=PA=2BE=4£®
£¨¢ñ£©ÇóÖ¤£ºCE¡ÎÆ½ÃæPAD£»
£¨¢ò£©ÔÚÀâABÉÏÊÇ·ñ´æÔÚÒ»µãF£¬Ê¹µÃÆ½ÃæDEF¡ÍÆ½ÃæPCE£¿Èç¹û´æÔÚ£¬Çó$\frac{AF}{AB}$µÄÖµ£»Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{1}{2}$£¬Ô­µãµ½¹ýÍÖÔ²ÓÒ½¹µãFÇÒбÂÊÊÇ1µÄÖ±ÏßlµÄ¾àÀëΪ$\frac{\sqrt{2}}{2}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªA£¬BΪÍÖÔ²³¤ÖáµÄÁ½¸ö¶Ëµã£¬×÷²»Æ½ÐÐÓÚ×ø±êÖáÇÒ²»¾­¹ýÓÒ½¹µãFµÄ¹âÏßPQ£¬ÈôÂú×ã¡ÏAFP=¡ÏBFQ£¬ÇóÖ¤£º¸îÏßPQºã¾­¹ýÒ»¶¨µã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Éè¡÷ABCµÄÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðÊÇa£¬b£¬c£¬ÒÑÖªA=$\frac{¦Ð}{6}$£¬a=bcosC£®
£¨¢ñ£©Çó½ÇCµÄ´óС£»
£¨¢ò£©Èçͼ£¬ÔÚ¡÷ABCµÄÍâ½Ç¡ÏACDÄÚȡһµãP£¬Ê¹PC=2£¬¹ýµãP×÷PM¡ÍCAÓÚM£¬PN¡ÍCDÓÚN£¬ÉèÏß¶ÎPM£¬PNµÄ³¤·Ö±ðΪm£¬n£¬¡ÏPCM=x£¬ÇÒ$\frac{¦Ð}{6}£¼x£¼\frac{¦Ð}{2}$£¬Çóf£¨x£©=mnµÄ×î´óÖµ¼°ÏàÓ¦xµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®º¯Êýy=2tan£¨2x+$\frac{¦Ð}{4}$£©µÄͼÏóµÄ¶Ô³ÆÖÐÐÄÊÇ£¨$\frac{2k-1}{8}$¦Ð£¬0£©£¬k¡Êz£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=sin$\frac{x}{2}$cos$\frac{x}{2}$-sin2$\frac{x}{2}$£®
£¨1£©Èôº¯Êýg£¨x£©=f£¨x£©-mÔÚ£¨-¡Þ£¬+¡Þ£©ÉÏÎÞÁãµã£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨2£©ÉèA£¬B£¬CÊÇ¡÷ABCµÄÈý¸öÄڽǣ¬Èôf£¨A£©=f£¨B£©ÇÒA¡ÙB£¬Çóf£¨C£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èô{an}ΪµÈ²îÊýÁУ¬SnÊÇÆäǰnÏîµÄºÍ£¬ÇÒS11=$\frac{22}{3}$¦Ð£¬{bn}ΪµÈ±ÈÊýÁУ¬b5•b7=$\frac{¦Ð^2}{4}$£¬Ôòtan£¨a6-b6£©Îª£¨¡¡¡¡£©
A£®$\sqrt{3}$B£®¡À$\sqrt{3}$C£®$\frac{{\sqrt{3}}}{3}$D£®¡À$\frac{{\sqrt{3}}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Çó¹ØÓÚxµÄ²»µÈʽ|x-x2-2|£¾x2-3x-4µÄ½â¼¯£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµã£¨1£¬$\frac{\sqrt{3}}{2}$£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬¹ýÍÖÔ²ÓÒ¶¥µãAµÄÁ½ÌõбÂʳ˻ýΪ-$\frac{1}{4}$µÄÖ±Ïß·Ö±ð½»ÍÖÔ²CÓÚM£¬NÁ½µã£®
£¨I£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©Ö±ÏßMNÊÇ·ñ¹ý¶¨µãD£¿Èô¹ý¶¨µãD£¬Çó³öµãDµÄ×ø±ê£»Èô²»¹ý£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸