·ÖÎö £¨1£©ÒÀÌâÒ⣬c=$\sqrt{3}$£¬a2=b2+3£¬£¨$\sqrt{3}$£¬$\frac{1}{2}$£©´úÈëÍÖÔ²·½³Ì£¬Çó³öa£¬b£¬¼´¿ÉÇóÍÖÔ²µÄ·½³Ì¼°ÀëÐÄÂÊ£»
£¨2£©¢ÙÀûÓÃбÂʹ«Ê½£¬¼´¿ÉÇók1k2µÄÖµ£»
¢ÚÓÉ¢ÙÖª£¬k3k4=k1k2=$-\frac{1}{4}$£¬¹Êx1x2=-4y1y2£®ÀûÓÃOB2+OC2=$x_1^2+y_1^2+x_2^2+y_2^2$£¬ÇóOB2+OC2µÄÖµ£®
½â´ð ½â£º£¨1£©ÒÀÌâÒ⣬c=$\sqrt{3}$£¬a2=b2+3£¬¡2·Ö
ÓÉ$\frac{3}{{{b^2}+3}}+\frac{{\frac{1}{4}}}{b^2}=1$£¬½âµÃb2=1£¨b2=$-\frac{3}{4}$£¬²»ºÏ£¬ÉáÈ¥£©£¬´Ó¶øa2=4£®
¹ÊËùÇóÍÖÔ²·½³ÌΪ£º$\frac{x^2}{4}+{y^2}=1$£¬ÀëÐÄÂÊe=$\frac{{\sqrt{3}}}{2}$£®¡5·Ö
£¨2£©¢ÙÉèB£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬ÔòD£¨-x1£¬-y1£©£¬
ÓÚÊÇk1k2=$\frac{{{y_2}-{y_1}}}{{{x_2}-{x_1}}}•\frac{{{y_2}+{y_1}}}{{{x_2}+{x_1}}}$=$\frac{{£¨1-\frac{x_2^2}{4}£©-£¨1-\frac{x_1^2}{4}£©}}{x_2^2-x_1^2}$=$-\frac{1}{4}$£®¡8·Ö
¢ÚÓÉ¢ÙÖª£¬k3k4=k1k2=$-\frac{1}{4}$£¬¹Êx1x2=-4y1y2£®
ËùÒÔ£¨x1x2£©2=£¨-4y1y2£©2£¬¼´£¨x1x2£©2=$16£¨1-\frac{x_1^2}{4}£©£¨1-\frac{x_2^2}{4}£©$=$16-4£¨x_1^2+x_2^2£©+x_1^2x_2^2$£¬
ËùÒÔ£¬$x_1^2+x_2^2$=4£®¡11·Ö
ÓÖ2=$£¨\frac{x_1^2}{4}+y_1^2£©+£¨\frac{x_2^2}{4}+y_2^2£©$=$\frac{x_1^2+x_2^2}{4}+y_1^2+y_2^2$£¬¹Ê$y_1^2+y_2^2=1$£®
ËùÒÔ£¬OB2+OC2=$x_1^2+y_1^2+x_2^2+y_2^2$=5£®¡14·Ö
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌÓëÐÔÖÊ£¬¿¼²éбÂʹ«Ê½µÄÔËÓ㬿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{3}$ | B£® | ¡À$\sqrt{3}$ | C£® | $\frac{{\sqrt{3}}}{3}$ | D£® | ¡À$\frac{{\sqrt{3}}}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com