分析 (1)写出直线l的方程y=x-c,由题意可得$\frac{\sqrt{2}}{2}=\frac{c}{\sqrt{2}}$,求出c值,再由e=$\frac{1}{2}$求得a,结合异号条件求得b,则椭圆方程可求;
(2)设P(x1,y1),Q(x2,y2),且割线PQ的方程为y=kx+m(k≠0),联立直线和椭圆方程,利用根与系数关系得到P,Q两点横坐标的和与积.结合∠AFP=∠BFQ,得$\frac{{y}_{1}}{{x}_{1}-1}+\frac{{y}_{2}}{{x}_{2}-1}=0$,整理后再与根与系数的关系联立得到m=-4k.代入割线方程,由直线系方程得答案.
解答 (1)解:依题意设l:y=x-c,
则$\frac{\sqrt{2}}{2}=\frac{c}{\sqrt{2}}$,即c=1,又e=$\frac{1}{2}$,
则a=2,b=$\sqrt{{a}^{2}-{c}^{2}}=\sqrt{3}$,
∴椭圆C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)证明:设P(x1,y1),Q(x2,y2),且割线PQ的方程为y=kx+m(k≠0),
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=kx+m}\end{array}\right.$,得(3+4k2)x2+8kmx+4m2-12=0.
∴x1+x2=$-\frac{8km}{3+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$(*).
由∠AFP=∠BFQ,得kPF=-kOF,∴$\frac{{y}_{1}}{{x}_{1}-1}+\frac{{y}_{2}}{{x}_{2}-1}=0$,
即y1(x2-1)+y2(x1-1)=0.
即2kx1x2+(m-k)(x1+x2)-2m=0.
将(*)代入上式得:$2k\frac{4{m}^{2}-12}{3+4{k}^{2}}+(m-k)\frac{-8km}{3+4{k}^{2}}-2m=0$,
化简得:m=-4k.
∴割线PQ的方程为y=k(x-4),则割线PQ恒经过一定点(4,0).
点评 本题主要考查了直线与椭圆的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系解题,是处理这类问题的最为常用的方法,考查了直线恒过定点问题,该题是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com