精英家教网 > 高中数学 > 题目详情
17.己知函数f(x)=(2a+2)lnx+2ax2+5,g(x)=$\frac{1}{2}$lnx-$\frac{1}{2{e}^{2}}$x
(1)讨论函数f(x)的单调性;
(2)若a>0时,对?x1,x2∈[2,2e2]都有10+g(x1)≤f(x2)成立,试求实数a的取值范围.

分析 (1)首先对f(x)求导,对参数a分类讨论从而判断f'(x)是否大于0即可判断f(x)的单调性;
(2)对?x1,x2∈[2,2e2]都有10+g(x1)≤f(x2)成立可转化为:10+g(x)max≤f(x)min

解答 解:(1)f(x)的定义域为(0,+∞).
f'(x)=$\frac{2a+2}{x}$+4ax=$\frac{2(2a{x}^{2}+a+1)}{x}$
当a≥0时,f'(x)>0,故f(x)在(0,+∞)单调递增
当a≤-1时,f'(x)<0,故f(x)在(0,+∞)单调递减;
当-1<a<0时,令f'(x)=0,解得x=$\sqrt{-\frac{a+1}{2a}}$
即x∈$(0,\sqrt{-\frac{a+1}{2a}})$  时,f'(x)>0;x∈$(\sqrt{-\frac{a+1}{2a}},+∞)$ 时,f'(x)<0
故f(x)在 $(0,\sqrt{-\frac{a+1}{2a}})$ 单调递增,在 $(\sqrt{-\frac{a+1}{2a}},+∞)$ 单调递减;
(2)对?x1,x2∈[2,2e2]都有10+g(x1)≤f(x2)成立,可知
10+g(x)max≤f(x)min
根据(1)可知f(x)为单调递增函数,f(x)min=f(2)=(2a+2)ln2+8a+5,
g(x)=$\frac{1}{2}lnx$-$\frac{1}{2{e}^{2}}$ x,g'(x)=$\frac{1}{2x}$-$\frac{1}{2{e}^{2}}$=$\frac{{e}^{2}-x}{2x{e}^{2}}$,所以在[2,e2]为增函数,在[e2,2e2]为单调减函数,
g(x)max=g(e2)=$\frac{1}{2}ln{e}^{2}$-$\frac{1}{2{e}^{2}}×{e}^{2}$=$\frac{1}{2}$,
(2a+2)ln2+8a+5≥$\frac{1}{2}$+10,
∴a≥$\frac{11-4ln2}{4ln2+16}$,
故所求的参数a的取值范围为a≥$\frac{11-4ln2}{4ln2+16}$.

点评 本题主要考查了利用导数判断函数的单调性,以及函数的极值与转化思想的应用,属中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\left\{\begin{array}{l}f({x+2}),x<3\\{2^x},x≥3\end{array}$,则f(log23)=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过两点A(-2,1),B(m,3)的直线倾斜角是45°,则m等于(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设△ABC的三边为a,b,c满足$\frac{b+c}{a}=cosB+cosC$.
(1)求A的值;
(2)求$2{cos^2}\frac{B}{2}+3{cos^2}\frac{C}{2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某四面体的三视图如图所示,该四面体的体积的是8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,已知A(3,1),B(1,0),C(2,3),
(1)判断△ABC的形状;
(2)设O为坐标原点,$\overrightarrow{OD}$=m$\overrightarrow{OC}$(m∈R),且($\overrightarrow{AB}$-m$\overrightarrow{OC}$)∥$\overrightarrow{BC}$,求|$\overrightarrow{OD}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等比数列{an}中,a1=2,an>0,函数f(x)=x(x-a1)(x-a2)…(x-a8),且f′(0)=236
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Tn,b1=1,点(Tn+1,Tn)在直线-=上,若存在n∈N+,使不等式$\frac{2{b}_{1}}{{a}_{1}}$+$\frac{2{b}_{2}}{{a}_{2}}$+…+$\frac{2{b}_{n}}{{a}_{n}}$≥m成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知直线l1:3mx+(m+2)y+1=0,直线l2:(m-2)x+(m+2)y+2=0,且l1∥l2,则m的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.用数学归纳法证明“-1+3-5+…+(-1)n(2n-1)=(-1)nn”,假设当n=k时成立,则当n=k+1时,等式的左边增加的项为(  )
A.(-1)k(2k-1)B.-(-1)k(2k-1)C.-(-1)k+1(2k+1)D.(-1)k+1(2k+1)

查看答案和解析>>

同步练习册答案