精英家教网 > 高中数学 > 题目详情
7.用数学归纳法证明“-1+3-5+…+(-1)n(2n-1)=(-1)nn”,假设当n=k时成立,则当n=k+1时,等式的左边增加的项为(  )
A.(-1)k(2k-1)B.-(-1)k(2k-1)C.-(-1)k+1(2k+1)D.(-1)k+1(2k+1)

分析 由数学归纳法可知n=k时,左端为-1+3-5+…+(-1)k(2k-1)到n=k+1时,左端-1+3-5+…+(-1)k+1(2k+1)从而可得答案.

解答 解:∵用数学归纳法证明等式-1+3-5+…+(-1)n(2n-1)=(-1)nnn,时,
当n=1左边所得的项是-1;
假设n=k时,命题成立,左端为-1+3-5+…+(-1)k(2k-1);
则当n=k+1时,左端为-1+3-5+…+(-1)k(2k-1)+(-1)k+1(2k+1)
∴从“k→k+1”需增添的项:(-1)k+1(2k+1).
故选:D.

点评 本题考查数学归纳法,着重考查理解与观察能力,考查推理证明的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.己知函数f(x)=(2a+2)lnx+2ax2+5,g(x)=$\frac{1}{2}$lnx-$\frac{1}{2{e}^{2}}$x
(1)讨论函数f(x)的单调性;
(2)若a>0时,对?x1,x2∈[2,2e2]都有10+g(x1)≤f(x2)成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列5个命题:
(1){很大的数}可以组成一个集合;
(2)集合{x|ax+b=0}是单元素集合;
(3)集合{小于1的正有理数}是一个有限集;
(4){1,2,3,4}={2,4,1,3};
(5)任何集合的子集个数都不少于1个;
其中正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列.
(1)求{an}的公比q;
(2)若a1-a3=3,bn=$\frac{1}{n(n+1)}$+|an|,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=x+$\frac{b}{x}$(b∈R)的导函数在区间(1,2)上有零点,则f(x)在下列区间上单调递增的是(  )
A.(-∞,-1]B.(-1,0)C.(0,1)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.记数列{an}的前n项和为Sn,若Sn+(1+$\frac{2}{n}$)an=4,则a2016=(  )
A.$\frac{2016}{{2}^{2016}}$B.2016×22015C.2016×22016D.$\frac{2016}{{2}^{2015}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a,b,c是空间的三条直线,给出以下三个命题:
①若a⊥b,b⊥c,则a⊥c;
②若a和b共面,b和c共面,则a和c也共面;
③若a∥b,b∥c,则a∥c.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.等差数列{an}前11项的和等于前4项的和.若a1=1,ak+a4=0,则k=(  )
A.12B.11C.10D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.用4种颜色给正四棱锥的五个顶点涂色,同一条棱的两个顶点涂不同的颜色,则符合条件的所有涂法共有(  )
A.24种B.48种C.64种D.72种

查看答案和解析>>

同步练习册答案