精英家教网 > 高中数学 > 题目详情

【题目】给定正整数,将分拆成若干个互异正整数的和,这些正整数的乘积记为.对所有不同的分法,求的最大值.

【答案】

【解析】

分拆成时,达到最大值.

下面证明:具有以下4条性质.

(1)

(2)

3)最多有一个,使

(4).

1)若有某个,必定是.

,则,矛盾.

2)若有某个,使得,则令.

,知,矛盾.

3)若有某个,使得,则令.

,知,矛盾.

(4)若,则由知,存在,且由前面的讨论有或6.

(ⅰ)当时,将分拆成,由,知,矛盾.

(ⅱ)当时,将分拆成,由,知,矛盾.

,将分拆成,由,知,矛盾.

综上所述,当达到最大时,的分拆只有两种形式:

第一种形式为

第二种形式为.

同时存在上述两种类型的分拆,即

其中,.

我们证明必有.

实际上,若,移项得.矛盾.

同样可知,亦矛盾.

于是,.从而,,即.

此时,对应的值之比为.

因此,当同时存在两种分拆时,第一种形式的分拆使达到最大.

取划分数列,则对给定的整数,总存在确定的整数

使得.

,则.

解得,即.

于是,对给定的正整数,总存在确定的整数,使得.

(1)当时,

这是第二种形式的分拆,其中.

存在第一种形式的分拆,则由上面讨论,必有,即

,这与矛盾.

于是,只存在第二种形式的分拆,此时,.

2)当时,,这是第一种形式的分拆,其中.此时,.

综上所述,设

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:

直径

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合计

件数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

经计算,样本的平均值,标准差,以频率值作为概率的估计值.

1)由以往统计数据知,设备的性能根据以下不等式进行评判(表示相应事件的概率);①;②;③,评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,试判断设备的性能等级

2)将直径小于等于或直径大于的零件认为是次品.

i)若从设备的生产流水线上随意抽取2件零件,求恰有一件次品的概率;

ii)若从样本中随意抽取2件零件,计算其中次品个数分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为正方形,平面.

1)证明:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙两名工人在同样条件下每天各生产100件产品,且每生产1件正品可获利20元,生产1件次品损失30元,甲,乙两名工人100天中出现次品件数的情况如表所示.

甲每天生产的次品数/件

0

1

2

3

4

对应的天数/天

40

20

20

10

10

乙每天生产的次品数/件

0

1

2

3

对应的天数/天

30

25

25

20

(1)将甲每天生产的次品数记为(单位:件),日利润记为(单位:元),写出的函数关系式;

(2)如果将统计的100天中产生次品量的频率作为概率,记表示甲、乙两名工人1天中各自日利润不少于1950元的人数之和,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)是否存在实数,使得函数的极值大于?若存在,求的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为直角梯形,,平面底面.

(Ⅰ)判断平面与平面是否垂直,并给出证明;

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求上的最值;

(2)设,若当,且时,,求整数的最小值..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①在线性回归模型中,相关指数越接近于1,表示回归效果越好;

②两个变量相关性越强,则相关系数r就越接近于1;

③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均减少0.5个单位;

④两个模型中残差平方和越小的模型拟合的效果越好.

⑤回归直线恒过样本点的中心,且至少过一个样本点;

⑥若的观测值满足≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;

⑦从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)求函数f(x)的极值.

查看答案和解析>>

同步练习册答案