精英家教网 > 高中数学 > 题目详情

【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:

直径

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合计

件数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

经计算,样本的平均值,标准差,以频率值作为概率的估计值.

1)由以往统计数据知,设备的性能根据以下不等式进行评判(表示相应事件的概率);①;②;③,评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,试判断设备的性能等级

2)将直径小于等于或直径大于的零件认为是次品.

i)若从设备的生产流水线上随意抽取2件零件,求恰有一件次品的概率;

ii)若从样本中随意抽取2件零件,计算其中次品个数分布列和数学期望.

【答案】1)该设备的性能为丙级别(2)(iii)详见解析,

【解析】

1)通过计算可得答案;

2)(i)根据独立重复事件的概率公式计算可得答案;(ii)根据二项分布的概率公式计算可得分布列,根据期望公式即可得期望.

1)由题意知道:.

所以由图表知道:

所以该设备的性能为丙级别;

2)由图表知道:直径小于或等于的零件有2件,大于的零件有4件,共计6.

i)从设备的生产流水线上任取一件,取到次品的概率为,所以恰有一件次品的概率为(或等于0.1128);

ii)从100件样品中任意抽取2件,次品数可能取值为012

.

所以,随机变量的分布列为

0

1

2

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,其中均为实数.

)若,求的取值范围;

)设,若,在区间上总存在使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制如图所示频率分布直方图,已知中间三组的人数可构成等差数列.

(1)求的值;

2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列列联表,并判断是否有的把握认为消费金额与性别有关?

(3)分析人员对抽取对象每周的消费金额与年龄进一步分析,发现他们线性相关,得到回归方程.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替)

列联表

男性

女性

合计

消费金额

消费金额

合计

临界值表:

0.050

0.010

0.001

3.841

6.635

10.828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(abR)

1)当ab1时,求的单调增区间;

2)当a≠0时,若函数恰有两个不同的零点,求的值;

3)当a0时,若的解集为(mn),且(mn)中有且仅有一个整数,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.若幂函数的图象过点,则

B.命题:“”,则的否定为“

C.”是“”的充分不必要条件

D.是相互独立事件,则也是相互独立事件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点F(1,0),O为坐标原点,AB是抛物线C上异于 O的两点.

(1)求抛物线C的方程;

(2)若直线AB过点(8,0),求证:直线OAOB的斜率之积为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知球的半径为3,该球的内接正三棱锥的体积最大值为,内接正四棱锥的体积最大值为,则的值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将边长为2的正方形沿对角线折叠,使得平面平面,又平面.

(1)若,求直线与直线所成的角;

(2)若二面角的大小为,求的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定正整数,将分拆成若干个互异正整数的和,这些正整数的乘积记为.对所有不同的分法,求的最大值.

查看答案和解析>>

同步练习册答案