精英家教网 > 高中数学 > 题目详情

已知数列中,且点在直线上。
(1)求数列的通项公式;
(2)若函数求函数的最小值;
(3)设表示数列的前项和.试问:是否存在关于的整式,使得
对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由。

(1)="n" (2)(3)存在,证明详见解析

解析试题分析:(1)把点P()代入直线x y 1=0得到,可知数列{}是等差数列.最后写出等差数列的通项公式=n.(2)首先求出的表达式,通过判断的符号,确定的单调性,从而求出最小值.(3)求出,Sn的表达式,可得
由该递推公式可得到,即,故.
试题解析:(1)点P()在直线x y 1=0上,即且a1=1,
数列{}是以1为首项,1为公差的等差数列.(2)
=n()a1=1满足=n,所以数列的通项公式为=n.
(2)


是单调递增,故的最小值是
(3)

   ,


.
故存在关于n的整式使等式对一切不小于2的自然数n恒成立.
考点:1.等差数列的通项公式;2.数列的前n项和和增减性;3.数列的递推公式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列的前项和为
(1)若数列是首项与公差均为的等差数列,求
(2)若且数列均是公比为的等比数列,
求证:对任意正整数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为等比数列,是等差数列,
(Ⅰ)求数列的通项公式及前项和
(2)设,其中,试比较的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列中,.
(I)求数列的通项公式;
(II)若数列的前项和,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列前三项的和为,前三项的积为.
(1)求等差数列的通项公式;
(2)若成等比数列,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,数列中,,且点在直线上.
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的通项公式;
(Ⅲ)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是公比大于1的等比数列,为数列的前项和.已知,且构成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)令,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项的和为,求证:数列为等差数列的充要条件是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如果项数均为的两个数列满足且集合,则称数列是一对“项相关数列”.
(Ⅰ)设是一对“4项相关数列”,求的值,并写出一对“项相
关数列”
(Ⅱ)是否存在“项相关数列”?若存在,试写出一对;若不存在,请说明理由;
(Ⅲ)对于确定的,若存在“项相关数列”,试证明符合条件的“项相关数列”有偶数对.

查看答案和解析>>

同步练习册答案