精英家教网 > 高中数学 > 题目详情

已知等差数列前三项的和为,前三项的积为.
(1)求等差数列的通项公式;
(2)若成等比数列,求数列的前项和.

(1);(2)

解析试题分析:本题考查等差等比数列的概念、通项公式、前项和公式、数列求和等基础知识,考查化归与转化思想、分类讨论思想,考查基本运算能力.第一问,将已知写成数学表达式,解方程得出的值,利用等差数列的通项公式,直接写出即可;第二问,由于第一问得到了2个通项公式,所以分情况验证是否都符合题意,经检验,符合题意,将代入到中,将它转化为分段函数,去掉绝对值,分情况求和:,而符合的式子,所以总结得
试题解析:(1)设等差数列的公差为,则
由题意得:,解得
所以由等差数列通项公式可得:
.
(2)当时,分别为-1,-4,2,不成等比数列;
时,分别为-1,2,-4,成等差数列,满足条件.
.
记数列的前项和为,当时,;当时,
时,

时,满足此式.
综上, 
考点:1.等差数列的通项公式;2.等比中项;3.数列求和;4.等差数列的前n项和公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列,满足
(1)已知,求数列所满足的通项公式;
(2)求数列 的通项公式;
(3)己知,设,常数,若数列是等差数列,记,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列满足:.
(1)求的通项公式;
(2)若(),求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和为,且.
(1)求数列的通项公式;
(2)设求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为等比数列,是等差数列,
(Ⅰ)求数列的通项公式及前项和
(Ⅱ)设,其中,试比较的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,且点在直线上。
(1)求数列的通项公式;
(2)若函数求函数的最小值;
(3)设表示数列的前项和.试问:是否存在关于的整式,使得
对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,数列的前项和为,点在曲线,且.
(1)求数列的通项公式;
(2)数列的前项和为,且满足,求数列的通项公式;
(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的首项,前项和为
(I)求
(Ⅱ)设,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的各项均为正实数,,若数列满足,其中为正常数,且.
(1)求数列的通项公式;
(2)是否存在正整数,使得当时,恒成立?若存在,求出使结论成立的的取值范围和相应的的最小值;若不存在,请说明理由;
(3)若,设数列对任意的,都有成立,问数列是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.

查看答案和解析>>

同步练习册答案