精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ex﹣a(x+1)(a≠0).
(1)讨论f(x)的单调性;
(2)若f(x)>a2﹣a,求a的取值范围.

【答案】
(1)解:f′(x)=ex﹣a,

若a<0,则f′(x)>0,f(x)在R递增,

若a>0,令f′(x)>0,解得;x>lna,令f′(x)<0,解得:x<lna,

∴f(x)在(﹣∞,lna)递减,在(lna,+∞)递增


(2)解:若a>0,只需f(lna)>a2﹣a,即﹣alna>a2﹣a,

即lna+a﹣1<0,令g(a)=lna+a﹣1,

a>0时,g(a)递增,又g(1)=0,则0<a<1;

若a<0,则f(ln(﹣a))=﹣aln(﹣a)﹣2a,

f(ln(﹣a))﹣(a2﹣a)=﹣aln(﹣a)﹣a2﹣a=﹣a[ln(﹣a)+a+1]

∵ln(﹣a)+a+1≤0,∴﹣a[ln(﹣a)+a+1]≤0,

则f[ln(﹣a)]≤a2﹣a,不合题意,

综上,a的范围是(0,1)


【解析】(Ⅰ)求导函数,根据导导函数和0的关系由此可得f(x)的单调性;(Ⅱ)需要分类讨论,根据函数的单调求出函数的最值,即可求出a的范围.
【考点精析】掌握利用导数研究函数的单调性和函数的最大(小)值与导数是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(2x﹣ )+2sin(x﹣ )cos(x﹣ ).
(1)求函数f(x)的最小正周期和图象的对称轴方程.
(2)求函数f(x)在区间[﹣ ]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当 时,讨论函数在区间上零点的个数;

(2)当时,如果函数恰有两个不同的极值点 ,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若函数g(x)=f2(x)﹣axf(x)恰有6个零点,则a的取值范围是(
A.(0,3)
B.(1,3)
C.(2,3)
D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)满足:对任意x1x2∈R,当且仅当x1=x2时,有f(x1)=f(x2).则f(﹣1)+f(0)+f(1)的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】多面体 在平面上的射影是线段的中点.

(1)求证:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的函数对任意的 ,都有 成立,且当 时,

(1)求的值;

(2)求证: 是R上的增函数;

(3)若 ,不等式 对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数有三个不同的零点,则实数的取值范围是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①命题:x∈(0,2),3x>x3的否定是:x∈(0,2),3x≤x3

②若f(x)=2x﹣2﹣x,则x∈R,f(﹣x)=﹣f(x);

③若f(x)=x+,则x0∈(0,+∞),f(x0)=1;

④等差数列{an}的前n项和为Sn,若a4=3,则S7=21;

⑤在△ABC中,若A>B,则sinA>sinB.

其中真命题是____.(只填写序号)

查看答案和解析>>

同步练习册答案