精英家教网 > 高中数学 > 题目详情

已知角α终边经过点P(x,-)(x≠0),且cosα=x.求sinα+的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin+cos,x∈R.
(1)求f(x)的最小正周期和最小值;
(2)已知cos(β-α)=,cos(β+α)=-,0<α<β≤,求证:[f(β)]2-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a=(5cos x,cos x),b=(sin x,2cos x),设函数f(x)=a·b+|b|2.
(1)当∈时,求函数f(x)的值域;
(2)当x时,若f(x)=8,求函数f的值;
(3)将函数yf(x)的图象向右平移个单位后,再将得到的图象上各点的纵坐标向下平移5个单位,得到函数yg(x)的图象,求函数g(x)的表达式并判断奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sinsin(+).
(1)求函数f(x)在[-π,0]上的单调区间.
(2)已知角α满足α∈(0,),2f(2α)+4f(-2α)=1,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期为2,且当x=时,f(x)的最大值为2.
(1)求f(x)的解析式.
(2)在闭区间[,]上是否存在f(x)的对称轴?如果存在求出其对称轴.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点在函数的图象上,直线图象的任意两条对称轴,且的最小值为.
(1)求函数的单递增区间和其图象的对称中心坐标;
(2)设,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数f(x)=Asin +1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为.
(1)求函数f(x)的解析式;
(2)设αf=2,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中)的部分图象如图所示.

(1)求函数的解析式;
(2)求函数的单调增区间;
(3)求方程的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=tan.
(1)求f的值;
(2)设α,若f=2,求cos的值.

查看答案和解析>>

同步练习册答案