精英家教网 > 高中数学 > 题目详情
6.等差数列{an}的公差为d,an>0,前n项和为Sn,若a2,S3,a2+S5成等比数列,则$\frac{d}{a_1}$=(  )
A.0B.$\frac{3}{2}$C.$\frac{2}{3}$D.1

分析 由等差数列通项公式、前n项和公式和等比数列的性质,列出方程,能求出结果.

解答 解:∵等差数列{an}的公差为d,an>0,前n项和为Sn
a2,S3,a2+S5成等比数列,
∴${{S}_{3}}^{2}={{a}_{2}({a}_{1}+{d}_{\;}+{S}_{5})}^{\;}$,
即(3a1+3d)2(a1+d)(6a1+11d),
整理,得:2($\frac{d}{{a}_{1}}$)2-$\frac{d}{{a}_{1}}$-3=0,
解得$\frac{d}{{a}_{1}}$=$\frac{3}{2}$或$\frac{d}{{a}_{1}}$=-1(舍),
∴$\frac{d}{a_1}$=$\frac{3}{2}$.
故选:B.

点评 本题考查等差数列的公差和首项的比值的求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=3sin({2x+\frac{π}{4}})({x∈R})$
(1)函数f(x)的单调区间.
(2)求函数f(x)取得最大值、最小值的自变量x的集合,并分别写出最大值、最小值是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.有甲、乙两个班,进行数学考试,按学生考试及格与不及格统计成绩后,得到如下的列联表
不及格及格总计
甲班103545
乙班73845
总计177390
根据表中数据,你有多大把握认为成绩及格与班级有关?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ex-ax2+1的定义域为R,其导函数为f'(x)
(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;
(2)若a=1,证明:$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>2-2ln2,其中x1≠x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,一个短轴端点到焦点的距离为2.
(1)求椭圆C1的方程;
(2)已知椭圆具有如下性质:若椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),则椭圆在其上一点A(m,n)处的切线方程为$\frac{mx}{{a}^{2}}$+$\frac{ny}{{b}^{2}}$=1,试运用该性质解决以下问题:
(i)如图(1),点P为C1在第一象限中的任意一点,过P作C1的切线l,l分别与x轴和y轴的正半轴交于A、B两点,求△OAB面积的最小值;
(ii)如图(2),已知圆C2:x2+y2=1的切线与椭圆C1交于M、N两点,又椭圆C1在M、N两点处的切线l1、l2相交于点T,若$E(-2\sqrt{3},0),F(2\sqrt{3},0)$,求证:|TE|+|TF|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.图1为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.

(1)图2方框内已给出了该几何体的俯视图,请在方框内画出该几何体的正(主)视图和侧(左)视图;
(2)求证:BE∥平面PDA.
(3)求四棱锥B-CEPD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知cosα=-$\frac{4}{5}$,且α∈($\frac{π}{2}$,π),则tan($\frac{π}{4}$-α)=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.半径为1的球O内有一个内接正三棱柱,当正三棱柱的侧面积最大时,球的表面积与该正三棱柱的侧面积之差是4π-3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A(B)、C、D、O为顶点的四面体的外接球表面积为(  )
A.20πB.24πC.16πD.18π

查看答案和解析>>

同步练习册答案