精英家教网 > 高中数学 > 题目详情
给出下列命题:
①y=
x2+3
x2+2
的最小值是2;
②若a>b,则
1
a
1
b
成立的充要条件是ab>0;
③若不等式x2+ax-4<0对任意x∈(-1,1)恒成立,则a的取值范围为(-3,3).
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.
真命题的序号是
②④
②④
.(写出所有正确命题的序号)
分析:①利用基本不等式进行判断.②利用不等式的性质进行判断.③利用不等式恒成立的性质判断.④利用面面垂直的性质判断.
解答:解:①y=
x2+3
x2+2
=
x2+2+1
x2+2
=
x2+2
x2+2
+
1
x2+2
=
x2+2
+
1
x2+2
≥2
,当且仅当
x2+2
=
1
x2+2
取等号,即x2+2=1,方程不成立,∴①错误.
②由
1
a
1
b
1
a
-
1
b
=
b-a
ab
<0
,∴当a>b时,ab>0,∴②正确.
③由x2+ax-4<0得ax<4-x2,当x∈(0,1)时,不等式等价为a<
4-x2
x
=
4
x
-x
,则y=
4
x
-x
在(0,1)上单调递减,∴
4
x
-x>4-1=3
,此时a≤3,∴③错误.
④根据面面垂直性质定理,可知与它们的交线不垂直的直线与另一个平面也不垂直,∴④正确.
故答案为:②④.
点评:本题主要考查命题的真假判断,涉及的知识点较多,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:①y=lg(sinx+
1+sin2x
)
是奇函数;
②若α,β是第一象限角,且α>β,则cosα<cosβ;
③函数f(x)=2x-x2在R上有3个零点;
④函数y=sin2x的图象向左平移
π
4
个单位,得到函数y=sin(2x+
π
4
)
的图象.
其中正确命题的序号是
 
.(把正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题
①函数y=tan(3x-
π
2
)
的周期是
π
3

②角α终边上一点P(-3a,4a),且a≠0,那么cosα=-
3
5

③函数y=cos(2x-
π
3
)
的图象的一个对称中心是(-
π
12
,0)

④已知f(x)=sin(ωx+2)满足f(x+2)+f(x)=0,则ω=
π
2

其中正确的个数有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
y=
x2+3
x2+2
的最小值为2;       
②若a>b,则
1
a
1
b
成立的充要条件是ab>0;
③若不等式x2+ax-4<0对任意x∈(-1,1)恒成立,则实数a的取值范围为(-3,3).
真命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①y=tanx在其定义域上是增函数;
②函数y=|sin(2x+
π
3
)|
的最小正周期是
π
2

p:
π
4
<α<
π
2
;q:f(x)=logtanαx在(0,+∞)内是增函数,则p是q的充分非必要条件;
④函数y=lg(sinx+
sin2x+1
)
的奇偶性不能确定.
其中正确命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①y=x2是幂函数;
②函数f(x)=2x-x2的零点有2个;
③(x+
1
x
+2)5展开式的项数是6项;
④函数y=sinx(x∈[-π,π])图象与x轴围成的图形的面积是S=
π
sinxdx;
⑤若ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,则P(ξ≥2)=0.2.
其中真命题的序号是
①⑤
①⑤
(写出所有正确命题的编号).

查看答案和解析>>

同步练习册答案