精英家教网 > 高中数学 > 题目详情
2.已知扇形的弧长为πcm,圆心角为$\frac{π}{3}$,则该扇形的面积是$\frac{3π}{2}$cm2

分析 设扇形的半径为r,根据弧长公式可求出r的值,再由扇形的面积公式即可得出结论.

解答 解:设扇形的半径为r,
∵扇形的圆心角为$\frac{π}{3}$,它的弧长为πcm,
∴$\frac{π}{3}$•r=π,解得r=3(cm),
∴S扇形=$\frac{1}{2}$×π×3=$\frac{3π}{2}$cm2
故答案为:$\frac{3π}{2}$.

点评 本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x+$\frac{4}{m}$|+|x-m|,(m>0).
(1)若函数f(x)的最小值为5,求实数m的值;
(2)求使得不等式f(1)>5成立的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知B=$\frac{π}{4}$,cosA-cos2A=0
(1)求角C;  
(2)若b2+c2=a-bc+2,求a,c值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=(x-4a)(x-2),其中a>0
(1)若a=$\frac{1}{4}$,求不等式f(x)<0的解集;
(2)求f(1)+$\frac{1}{a}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某公司于2015年底建成了一条生产线,自2016年1月份产品投产上市一年来,该公司的营销状况所反映出的每月获得的利润y(万元)与月份x之间的函数关系为:y=$\left\{\begin{array}{l}{26x-56(1≤x≤5,x∈N*)}\\{210-20x(5<x≤12,x∈N*)}\end{array}\right.$
(Ⅰ)2016年第几个月该公司的月利润最大?最大值是多少万元?
(Ⅱ)若公司前x个月的月平均利润(w=$\frac{前x个月的利润总和}{x}$)达到最大时,公司下个月就应采取改变营销模式,拓宽销售渠道等措施,以保持盈利水平,求w(万元)与x(月)之间的函数关系,并指出这家公司在2016年的第几个月就应采取措施.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知0<α<π,且sinα+cosα=-$\frac{1}{5}$,则cosα-sinα=(  )
A.-$\frac{7}{5}$B.$\frac{7}{5}$C.-$\frac{\sqrt{37}}{5}$D.$\frac{\sqrt{37}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于24小时的人数是(  )
A.76B.92C.108D.114

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.现有四个点P1(0,-1),P2(-1,-1),P3(-1,$\frac{\sqrt{3}}{2}$),P4(-1,-$\frac{\sqrt{3}}{2}$),其中只有三个点在椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在过点M(1,0)的直线l,使得直线l与椭圆C交于A,B两点,线段AB的垂直平分线与x轴交于点N,且满足AB=2$\sqrt{10}$|MN|,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax2+ax+2.
(1)对任意的x∈R.f(x)>0恒成立,求a的取值范围;
(2)若对于a∈[-1,1],f(x)<-a+5恒成立,求x的取值范围.

查看答案和解析>>

同步练习册答案