| A. | -$\frac{7}{5}$ | B. | $\frac{7}{5}$ | C. | -$\frac{\sqrt{37}}{5}$ | D. | $\frac{\sqrt{37}}{5}$ |
分析 由题意得出sinα>0,cosα<0,求出2sinαcosα的值,再求出cosα-sinα的值.
解答 解:0<α<π,∴sinα>0,
又sinα+cosα=-$\frac{1}{5}$,
∴cosα<0,
∴sin2α+2sinαcosα+cos2α=$\frac{1}{25}$,
∴2sinαcosα=$\frac{1}{25}$-1=-$\frac{24}{25}$,
∴cosα-sinα=-$\sqrt{{cos}^{2}α-2sinαcosα{+sin}^{2}α}$=-$\sqrt{1-(\frac{24}{25})}$=-$\frac{7}{5}$.
故选:A.
点评 本题考查了同角的三角函数关系应用问题,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 公园 | 甲 | 乙 | 丙 | 丁 |
| 获得签名人数 | 45 | 60 | 30 | 15 |
| 有兴趣 | 无兴趣 | 合计 | |
| 男 | 25 | 5 | 30 |
| 女 | 15 | 15 | 30 |
| 合计 | 40 | 20 | 60 |
| P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
| k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com