Ϊ¹á³¹¡°¼¤Ç鹤×÷£¬¿ìÀÖÊýѧ¡±µÄÀíÄijѧУÔÚѧϰ֮Óà¾ÙÐÐȤζ֪ʶÓн±¾ºÈü£¬±ÈÈü·Ö³õÈüºÍ¾öÈüÁ½²¿·Ö£¬ÎªÁËÔö¼Ó½ÚÄ¿µÄȤζÐÔ£¬³õÈü²ÉÓÃÑ¡ÊÖѡһÌâ´ðÒ»ÌâµÄ·½Ê½½øÐУ¬Ã¿Î»Ñ¡ÊÖ×î¶àÓÐ5´ÎÑ¡´ðÌâµÄ»ú»á£¬Ñ¡ÊÖÀۼƴð¶Ô3Ìâ»ò´ð´í3Ìâ¼´ÖÕÖ¹Æä³õÈüµÄ±ÈÈü£¬´ð¶Ô3ÌâÕßÖ±½Ó½øÈë¾öÈü£¬´ð´í3ÌâÕßÔò±»ÌÔÌ­£¬ÒÑ֪ѡÊÖ¼×´ðÌâµÄÕýÈ·ÂÊΪ
2
3
£®
£¨1£©ÇóÑ¡ÊÖ¼×´ðÌâ´ÎÊý²»³¬¹ý4´Î¿É½øÈë¾öÈüµÄ¸ÅÂÊ£»
£¨2£©ÉèÑ¡ÊÖ¼×ÔÚ³õÈüÖдðÌâµÄ¸öÊý¦Î£¬ÊÔд³ö¦ÎµÄ·Ö²¼ÁУ¬²¢Çó¦ÎµÄÊýѧÆÚÍû£®
¿¼µã£ºÀëÉ¢ÐÍËæ»ú±äÁ¿¼°Æä·Ö²¼ÁÐ,ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûÓë·½²î
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨1£©Ñ¡ÊÖ¼×´ð3µÀÌâ½øÈë¾öÈüµÄ¸ÅÂÊΪ(
2
3
)3=
8
27
£¬Ñ¡ÊÖ¼×´ð4µÀÌâ½øÈë¾öÈüµÄ¸ÅÂÊΪ 
C
2
3
(
2
3
)2
1
3
2
3
=
8
27
£¬ÓÉ´ËÄÜÇó³öÑ¡ÊÖ¼×´ðÌâ´ÎÊý²»³¬¹ý4´Î¿É½øÈë¾öÈüµÄ¸ÅÂÊ£®
£¨2£©ÒÀÌâÒ⣬¦ÎµÄ¿ÉÄÜȡֵΪ3£¬4£¬5£®·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкͦεÄÊýѧÆÚÍû£®
½â´ð£º ½â£º£¨1£©Ñ¡ÊÖ¼×´ð3µÀÌâ½øÈë¾öÈüµÄ¸ÅÂÊΪ(
2
3
)3=
8
27
£¬
Ñ¡ÊÖ¼×´ð4µÀÌâ½øÈë¾öÈüµÄ¸ÅÂÊΪ 
C
2
3
(
2
3
)2
1
3
2
3
=
8
27
£¬
¡àÑ¡ÊÖ¼×´ðÌâ´ÎÊý²»³¬¹ý4´Î¿É½øÈë¾öÈüµÄ¸ÅÂÊP=
8
27
+
8
27
=
16
27
£®£¨4·Ö£©
£¨2£©ÒÀÌâÒ⣬¦ÎµÄ¿ÉÄÜȡֵΪ3£¬4£¬5£®
ÔòÓÐP(¦Î=3)=(
2
3
)3+(
1
3
)3=
1
3
£¬
P(¦Î=4)=
C
2
3
(
2
3
)2
1
3
2
3
+
C
2
3
(
1
3
)2
2
3
1
3
=
10
27
£¬
P(¦Î=5)=
C
2
4
(
2
3
)2•(
1
3
)2
2
3
+
C
2
4
(
1
3
)2•(
2
3
)2
1
3
=
8
27
£¬
¦Î345
P
1
3
10
27
8
27
¡àE¦Î=3¡Á
1
3
+4¡Á
10
27
+5¡Á
8
27
=
107
27
£®£¨8·Ö£©
µãÆÀ£º±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÅÅÁÐ×éºÏ֪ʶµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ[0£¬2]£¬Ôò
f(2x)
x
µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
A¡¢{x|0£¼x¡Ü4}
B¡¢{x|0¡Üx¡Ü4}
C¡¢{x|0£¼x¡Ü1}
D¡¢{x|0¡Üx¡Ü1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©º¯Êýf£¨x£©=£¨a-b£©x 
a
3
+b-3ÊÇÃݺ¯Êý£¬Çób 2log32-a -
1
2
µÄÖµ£®
£¨2£©¼ÆË㣺tan
¦Ð
4
-cos4
¦Ð
2
+2sin3¦Ð-sin2
¦Ð
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÓÉÖ±Ïßy=x+1ÉϵÄÒ»µãÏòÔ²£¨x-3£©2+y2=1ÒýÇÐÏߣ¬ÇóÇÐÏß³¤µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ΪÁËÑо¿ÓñÃׯ·ÖÖ¶Ô²úÁ¿µÄÓ°Ï죬ijũ¿ÆÔº¶ÔÒ»¿éÊÔÑéÌïÖÖÖ²µÄÒ»ÅúÓñÃ×¹²10000ÖêµÄÉú³¤Çé¿ö½øÐÐÑо¿£¬ÏÖ²ÉÓ÷ֲã³éÑù·½·¨³éÈ¡50Öê×÷ΪÑù±¾£¬Í³¼Æ½á¹ûÈçÏ£º
¸ß¸Ë°«¸ËºÏ¼Æ
Ô²Á£111930
ÖåÁ£13720
ºÏ¼Æ242650
£¨1£©ÏÖ²ÉÓ÷ֲã³éÑùµÄ·½·¨£¬´Ó¸ÃÑù±¾Ëùº¬µÄÔ²Á£ÓñÃ×ÖÐÈ¡³ö6ÖêÓñÃ×£¬ÔÙ´ÓÕâ6ÖêÓñÃ×ÖÐËæ»úÑ¡³ö2Ö꣬ÇóÕâ2ÖêÖ®ÖмÈÓи߸ËÓñÃ×ÓÖÓа«¸ËÓñÃ׵ĸÅÂÊ£»
£¨2£©¸ù¾Ý¶ÔÓñÃ×Éú³¤Çé¿ö×÷³öµÄͳ¼Æ£¬ÊÇ·ñÄÜÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.050µÄǰÌáÏÂÈÏΪÓñÃ×µÄÔ²Á£ÓëÓñÃ׵ĸ߸ËÓйأ¿£¨ÏÂÃæµÄÁÙ½çÖµ±íºÍ¹«Ê½¿É¹©²Î¿¼£º
P£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
£¬ÆäÖÐn=a+b+c+d£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏA={x|-2¡Üx¡Ü7}£¬B={x|m+1£¼x£¼2m-1}£¬
£¨1£©Èôm=3£¬ÇóA¡ÉB£»
£¨2£©ÈôBÊÇAµÄ×Ó¼¯£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÔ²M£º£¨x-2£©2+y2=1£¬QÊÇÖ±Ïßy=xÉϵ͝µã£¬QA¡¢QBÓëÔ²MÏàÇУ¬Çеã·Ö±ðΪµãA¡¢B£®
£¨1£©ÈôµãQµÄ×ø±êΪ£¨0£¬0£©£¬ÇóÇÐÏßQA¡¢QBµÄ·½³Ì£»
£¨2£©ÈôµãQµÄ×ø±êΪ£¨t£¬t£©£¬t¡ÊR£¬ÇóÖ±ÏßABµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©ÒÑÖª
x
=2
b
-3
a
£¬
y
=2
a
+
b
£¬|
a
|=|
b
|=1£¬
a
Óë
b
µÄ¼Ð½ÇΪ60¡ã£¬Çó
x
Óë
y
µÄ¼Ð½Ç£®
£¨2£©ÒÑÖª
a
=£¨3£¬4£©£¬
AB
Óë
a
ƽÐУ¬ÇÒ|
AB
|=10£¬µãAµÄ×ø±êΪ£¨-1£¬3£©£¬ÇóµãBµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèf£¨x£©=log
1
2
1-ax
x-1
ÎªÆæº¯Êý£¬Ôòa=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸