精英家教网 > 高中数学 > 题目详情
已知函数f(x)的定义域为[0,2],则
f(2x)
x
的定义域为(  )
A、{x|0<x≤4}
B、{x|0≤x≤4}
C、{x|0<x≤1}
D、{x|0≤x≤1}
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据复合函数定义域之间的关系,即可得到结论.
解答: 解:∵f(x)的定义域为[0,2],
∴要使函数
f(2x)
x
有意义,则
0≤2x≤2
x≠0

0≤x≤1
x≠0

解得0<x≤1,
即函数的定义域为{x|0<x≤1},
故选:C
点评:本题主要考查函数的定义域的求解,根据复合函数定义域之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是△ABC的内心(三个内角平分线交点)、外心(三条边的中垂线交点)、重心(三条中线交点)、垂心(三个高的交点)之一,且满足2
AP
BC
=
AC
2
-
AB
2
,则点P一定是△ABC的(  )
A、内心B、外心C、重心D、垂心

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3-3x-3有零点的区间是(  )
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log 
1
5
(x2-6x+10)在区间[1,2]上的最大值是(  )
A、0
B、log 
1
5
5
C、log 
1
5
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}为等差数列,若
a9
a8
<-1且其前n项和Sn有最大值,则使得Sn>0的n的最大值为(  )
A、16B、15C、9D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

艺术节期间,秘书处派甲,乙,丙,丁四名工作人员分别到A,B,C三个不同的演出场馆工作,每个演出场馆至少派一人,若要求甲,乙两人不能到同一演出场馆工作,则不同的分派方案有(  )
A、36种B、30种
C、24种D、20种

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x的绝对值不大于2,则可用不等式表示为(  )
A、|x|>2
B、|x|≥2
C、|x|<2
D、|x|≤2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3ax-1,a≠0
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.    
(Ⅲ)若a>0,求函数f(x)在区间[0,1]上的最小值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

为贯彻“激情工作,快乐数学”的理念,某学校在学习之余举行趣味知识有奖竞赛,比赛分初赛和决赛两部分,为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题的正确率为
2
3

(1)求选手甲答题次数不超过4次可进入决赛的概率;
(2)设选手甲在初赛中答题的个数ξ,试写出ξ的分布列,并求ξ的数学期望.

查看答案和解析>>

同步练习册答案