精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当a=2时,求曲线在点处的切线方程;

(2)设函数,讨论的单调性并判断有无极值,有极值时求出极值.

【答案】(1) 3x﹣y﹣9=0;(2) 若a>0时, 在(﹣∞,0), (a,+∞)上单调递增, 在(0,a)上单调递减, 当x=a时,函数有极小值,极小值为g(a)=﹣a3﹣sina

当x=0时,有极大值,极大值为g(0)=﹣a; 若a<0时, g(x)在(﹣∞,a)上单调递增, 在(0,a)上单调递减,当x=a时,函数有极大值,极大值为g(a)=﹣a3﹣sina

当x=0时,有极小值,极小值为g(0)=﹣a; 当a=0时, g(x)在(﹣∞,0),(0,+∞)上单调递增, 无极值.

【解析】试题分析:试题分析:

试题解析:(1)根据导数的几何意义即可求出曲线y=f(x)在点(3,f(3))处的切线方程,(2)先求导,再分类讨论即可求出函数的单调区间和极值.

试题解析:

(1)当a=2时,f(x)=x3﹣x2

∴f′(x)=x2﹣2x,

k=f(3)=9﹣6=3,f(3)=×27﹣9=0,

∴曲线y=f(x)在点(3,f(3))处的切线方程y=3(x﹣3),即3x﹣y﹣9=0

(2)函数g(x)=f(x)+(x﹣a)cosx﹣sinx=x3ax2+(x﹣a)cosx﹣sinx,

∴g′(x)=(x﹣a)(x﹣sinx),

令g′(x)=0,解得x=a,或x=0,

①若a>0时,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,

当x>a时,g′(x)>0恒成立,故g(x)在(a,+∞)上单调递增,

当0<x<a时,g′(x)<0恒成立,故g(x)在(0,a)上单调递减,

∴当x=a时,函数有极小值,极小值为g(a)=﹣a3﹣sina

当x=0时,有极大值,极大值为g(0)=﹣a,

②若a<0时,当x>0时,g′(x)>0恒成立,故若a<0时,

当x<a时,g′(x)>0恒成立,故g(x)在(﹣∞,a)上单调递增,

当a<x<0时,g′(x)<0恒成立,故g(x)在(a,0)上单调递减,

∴当x=a时,函数有极大值,极大值为g(a)=﹣a3﹣sina

当x=0时,有极小值,极小值为g(0)=﹣a

③当a=0时,g′(x)=x(x+sinx),

当x>0时,g′(x)>0恒成立,故g(x)在(0,+∞)上单调递增,

当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,

∴g(x)在R上单调递增,无极值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业生产的乒乓球被指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检测结果如下表所示:

抽取球数n

50

100

200

500

1 000

2 000

优等品数m

45

92

194

470

954

1 902

优等品频率

(1)计算表中乒乓球为优等品的频率.

(2)从这批乒乓球产品中任取一个,检测出为优等品的概率是多少?(结果保留到小数点后三位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数, (a>0且a≠1)是定义域为R的奇函数.

(Ⅰ) 求的值

(Ⅱ)若,试求不等式的解集;

(Ⅲ)若,且,求上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象如图所示,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】出一份道题的数学试卷试卷内的道题是这样产生的从含有道选择题的题库中随机抽道填空题的题库中随机抽道解答题的题库中随机抽.使用合适的方法确定这套试卷的序号(选择题编号为填空题编号为解答题编号为).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)若 ,求函数的单调区间;

(2)若,且方程内有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆),圆),若圆的一条切线与椭圆相交于两点.

(1)当 时,若点都在坐标轴的正半轴上,求椭圆的方程;

(2)若以为直径的圆经过坐标原点,探究是否满足,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·广东卷)若直线l1l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是(  )

A. ll1l2都不相交

B. ll1l2都相交

C. l至多与l1l2中的一条相交

D. l至少与l1l2中的一条相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆和直线,椭圆的离心率,坐标原点到直线的距离为.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知定点,若直线过点且与椭圆相交于两点,试判断是否存在直线,使以为直径的圆过点?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案