精英家教网 > 高中数学 > 题目详情
离心率为
1
2
的椭圆C1与双曲线C2有相同的焦点,且椭圆长轴的端点、短轴的端点、焦点到双曲线的一条渐近线的距离依次构成等差数列,则双曲线C2的离心率等于(  )
A、
15
3
B、
15
5
C、
21
3
D、
21
7
考点:双曲线的简单性质,椭圆的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:求出椭圆长轴的端点、短轴的端点、焦点到双曲线的一条渐近线的距离,利用等差数列的性质,即可得出结论.
解答: 解:设椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0),双曲线方程为
x2
m2
-
y2
n2
=1
(m>0,n>0)
它们一个公共的焦点为F(c,0)
∵椭圆长轴端点A到双曲线的渐近线nx-my=0的距离|AC|=
an
n2+m2
=
an
c
=2n,
椭圆短轴端点B到双曲线的渐近线nx-my=0的距离|BD|=
bm
c

椭圆焦点F到双曲线的渐近线nx-my=0的距离|FG|=
cn
c
=n,
∴2•
bm
c
=2n+n,
c
a
=
1
2

∴a=2c,
b=
a2-c2
=
3
c,
∴2
3
m=3n,
∴m=
3
2
n

∴c=
m2+n2
=
7
2
n

∴e=
c
m
=
7
2
n
3
2
n
=
21
3

故选:C.
点评:本题给出共焦点的椭圆与双曲线,在已知点到直线的距离成等差数列情况下,求离心率的分式的值,着重考查了椭圆、双曲线的标准方程和简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若实数x,y满足条件
x-y≥0
x+y-6≥0
x≤5
,则z=2x+y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=lg(1-
1
x
)+
2x-3
的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个命题:
①“全等的三角形面积相等”;
②“对角线互相垂直且相等的四边形是正方形”;
③“若x2≠9,则x≠3”;     
④“若x2>y2,则x>y”的否命题.
其中真命题是(  )
A、①③B、②③C、①②D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
x+2y≥4
2x+y≤4
x≥0
,则x+y的最大值是(  )
A、
8
3
B、2
C、3
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足约束条件
x-y≤0
x+y-1≥0
x-2y+2≥0
,则z=x+
1
2
y的最小值为(  )
A、
1
2
B、
3
4
C、1
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的是(  )
A、命题“若am2<bm2,则a<b”的逆命题是真命题
B、命题“p或q”为真命题,则命题“p”和命题“q”均为真命题
C、命题“?x∈R,x2-x>0”的否定是:“?x∈R,x2-x≤0”
D、已知x∈R,则“x>1”是“x>2”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y满足约束条件
2x+y≥6
0≤x≤2
0≤y≤5
,则z=2x+3y的最小值为(  )
A、7B、10C、16D、19

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙二人比赛投篮,每人连续投3次,投中次数多者获胜.若甲前2次每次投中的概率都是
1
3
,第3次投中的概率
1
2
;乙每次投中的概率都是
2
5
,甲乙每次投中与否相互独立.
(Ⅰ)求乙直到第3次才投中的概率;
(Ⅱ)在比赛前,从胜负的角度考虑,你支持谁?请说明理由.

查看答案和解析>>

同步练习册答案