精英家教网 > 高中数学 > 题目详情
在△ABC中,若tan
A-B
2
=
a-b
a+b
,则△ABC的形状是
等腰三角形或直角三角形
等腰三角形或直角三角形
分析:由正弦定理对tan
A-B
2
=
a-b
a+b
=
sinA-sinB
sinA+sinB
化简可得
sin
A-B
2
cos
A-B
2
=
sinA-sinB
sinA+sinB
=
2sin
A-B
2
cos
A+B
2
2sin
A+B
2
cos
A-B
2
,从而有sin
A+B
2
=cos
A+B
2
sin
A-B
2
=0
,结合0<A<π,0<B<π可求
解答:解:由正弦定理可得,tan
A-B
2
=
a-b
a+b
=
sinA-sinB
sinA+sinB

sin
A-B
2
cos
A-B
2
=
sinA-sinB
sinA+sinB
=
2sin
A-B
2
cos
A+B
2
2sin
A+B
2
cos
A-B
2

化简可得,sin
A+B
2
=cos
A+B
2
sin
A-B
2
=0

∵0<A<π,0<B<π
A+B
2
=
π
4
或A=B
A+B=
π
2
或A=B

故答案为:直角三角形或等腰三角形
点评:本题主要考查了正弦定理在解三角形中的应用,和差角公式的应用,解题中要注意角度的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若tanA+tanB+tanC=1,则tanAtanBtanC=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若tanA=-
1
2
,则cosA=
2
5
5
2
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若tanA=-2,则cosA=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①?x∈R,ex≥ex;②?x0∈(1,2),使得(
x
2
0
-3x0+2)ex0+3x0-4=0
成立;③若ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取得的点到O距离大小1的概率为1-
π
2
;④在△ABC中,若tanA+tanB+tanC>0,则△ABC是锐角三角形,其中正确命题的序号是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若tanA=2tanB=3tanC,则cosA的值为
 

查看答案和解析>>

同步练习册答案