精英家教网 > 高中数学 > 题目详情
双曲线的一个焦点是,则的值是__________.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
定长为3的线段AB两端点A、B分别在轴,轴上滑动,M在线段AB上,且
(1)求点M的轨迹C的方程;
(2)设过且不垂直于坐标轴的动直线交轨迹C于A、B两点,问:线段
是否存在一点D,使得以DA,DB为邻边的平行四边形为菱形?作出判断并证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线的准线过双曲线的一个焦点,则双曲线的离心率为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在中,,以为焦点的椭圆恰好过的中点

(1)求椭圆的标准方程;
(2)过椭圆的右顶点作直线与圆     相交于两点,试探究点能将圆分割成弧长比值为的两段弧吗?若能,求出直线的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是椭圆的左、右焦点,过点
倾斜角为的动直线交椭圆于两点.当时,,且
(1)求椭圆的离心率及椭圆的标准方程;
(2)求△面积的最大值,并求出使面积达到最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆G与双曲线有相同的焦点,且过点
(1)求椭圆G的方程;
(2)设是椭圆G的左焦点和右焦点,过的直线与椭圆G相交于A、B两点,请问的内切圆M的面积是否存在最大值?若存在,求出这个最大值及直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的一条渐近线的方程为,则         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本小题满分14分)
已知椭圆上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 过点()的动直线交椭圆两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过定点?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的中心在原点,离心率为,若它的一条准线与抛物线的准线重合,则该双曲线的方程是              

查看答案和解析>>

同步练习册答案