精英家教网 > 高中数学 > 题目详情
16.前n个正整数的和等于(  )
A.nB.n(n+1)C.$\frac{1}{2}$n(n+1)D.2n2

分析 利用等差数列的前n项几公式求解.

解答 解:前n个正整数的和:
Sn=1+2+3+…+n=$\frac{n(n+1)}{2}$.
故选:C.

点评 本题考查数列的前n项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象的一部分如图所示.
(1)求函数f(x)的解析式;
(2)求f(x)的振幅、周期、频率和初相.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知不等式2x-1>m(x2-1),若对于m∈[-2,2]不等式恒成立,则实数x的取值范围为($\frac{\sqrt{7}-1}{2}$,$\frac{1+\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.${∫}_{0}^{1}$|x2-8|dx=(  )
A.$\frac{21}{3}$B.$\frac{22}{3}$C.$\frac{23}{3}$D.$\frac{25}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知{an}为等差数列,a4=3,公差d=2,写出这个数列的第7项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(-1,-1),向量$\overrightarrow{b}$与向量$\overrightarrow{a}$的夹角为$\frac{π}{4}$,且$\overrightarrow{a}•\overrightarrow{b}$=1.
(1)求向量$\overrightarrow{b}$
(2)若向量$\overrightarrow{b}$与$\overrightarrow{n}$=(1,0)的夹角为$\frac{π}{2}$,向量$\overrightarrow{m}$=(cosC,2cos2$\frac{A}{2}$),其中A,B,C是△ABC的内角,且满足2B=A+C,试求|$\overrightarrow{b}$+$\overrightarrow{m}$|的取值范围
(3)求在(2)条件下取得最小值时A,并求此时能使方程sin(2x+A)=$\frac{m}{2}$在x∈[0,$\frac{π}{2}$]上存在两个相异实根的m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等比数列{an}、等差数列{bn},满足a1>0,b1=a1-1,b2=a2,b3=a3且数列{an}唯一.
(1)求数列{an},{bn}的通项公式;
(2)求数列{an•bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知三角形ABC的外接圆半径为1,且角A、B、C成等差数列,若角A,B,C所对的边长分别为a,b,c,求a2+c2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设△ABC内角A,B,C的对边分别为a,b,c,已知2cos(B+C)+cos2A=一$\frac{3}{2}$.
(1)求A的大小
(2)若a=$\sqrt{3}$,b+c=3,求b,c的值.

查看答案和解析>>

同步练习册答案