精英家教网 > 高中数学 > 题目详情
5.函数f(x)=lnx-4x+1的递增区间为(  )
A.($\frac{1}{4}$,+∞)B.(0,4)C.(0,$\frac{1}{4}$)D.(-∞,$\frac{1}{4}$)

分析 求出原函数的导函数,由导函数大于0求解分式不等式得答案.

解答 解:∵f(x)=lnx-4x+1,
∴f′(x)=$\frac{1}{x}-4=\frac{1-4x}{x}$(x>0).
由f′(x)>0,得$\frac{1-4x}{x}>0$,
∵x>0,∴1-4x>0,得0<x<$\frac{1}{4}$.
∴函数f(x)=lnx-4x+1的递增区间为(0,$\frac{1}{4}$).
故选:C.

点评 本题考查利用导数研究函数的单调性,考查原函数的单调性与导函数符号间的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某公司对新研发的一种产品进行试销,得到如下数据及散点图:
 定价x(元/kg) 10 20 30 40 50 60
 天销售量y(kg) 1150 643 424 262 165 86
 z=2lny 14.1 12.9 12.1 11.1 10.2 8.9

其中z=2lny,$\overline{x}$=35,$\overline{y}$=455,$\overline{z}$=11.55,$\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}$=1750,$\sum_{i=1}^{6}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})$=-34580,$\sum_{i=1}^{6}({x}_{i}-\overline{x})•({z}_{i}-\overline{z})$=-175.5,$\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}$=776840,$\sum_{i=1}^{6}({y}_{i}-\overline{y})•({z}_{i}-\overline{z})$=3465.2
(1)根据散点图判断y与x,z与x哪一对具有较强的线性相关性(给出判断即可,不必说明理由)
(2)根据Ⅰ的判断结果及数据,建立y关于x的回归方程(运算过程及回归方程中的系数均保留两位有效数字)
(3)定价为150元/kg时,天销售额的预报值为多少元?
附:对于一组数据(x1,y1),(x2,y2),(x3,y3),…(xn,yn),其回归直线$\widehat{y}$=$\widehat{b}$•x$+\widehat{a}$的斜率和截距的最小二乘法估计分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}•{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$$-\widehat{b}$$•\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于?x,y∈[0,$\frac{π}{2}$],使y≤sinx的取值的概率是(  )
A.$\frac{4}{{π}^{2}}$B.$\frac{2}{π}$C.$\frac{1}{2}$D.$\frac{2}{{π}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.与圆的有关性质类比,可以推出球的有关性质,给出以下类比:
①圆心与弦(非直径)中点的连线垂直弦类比得到球心与界面圆(不经过球心的小截面圆)圆心的连线垂直于截面;
②与圆心距离相等的两条弦长相等类比与球心距离相等额两个截面圆的面积相等;
③圆的周长C=πd类比球的表面积S=πd2
④圆的面积S=πr2类比球的体积V=πr3
其中类比正确的是(  )
A.①②④B.②③C.①②③D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=(ax+1-a)e-x+(a-1),其中a≥0
(Ⅰ)讨论f(x)在(0,+∞)上的单调性
(Ⅱ)若x≥0,[(a-1)x+1]ex≤ax+1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某高中学校为了解中学生的身高情况,从该校同年龄段的所有学生中随机抽取50名学生测量身高,由测量得到频率分布表和频率分布直方图(部分)如下:
身高[145,155)[155,165)[165,175)[175,185)[185,195]
频数3m19n4
(1)求m,n并在该题答题纸区域内补全频率分布直方图;
(2)请用这50名学生的身高数据来估计该校这个年龄段的学生身高平均数是多少?(同一组中的数据用该组的中点值作代表);
(3)从[145,155)和[185,195]这两组中任意取出两名学生,求这两名学生身高差距超过10cm的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若a=30.6,b=log30.2,c=0.63,则a,b,c大小顺序是a>c>b(由大到小).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=xlnx,
(Ⅰ)求f(x)的值域;
(Ⅱ)若x>1时,f(x)<a(x2-1),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)是定义在R上的偶函数,当x>0时,f(x)=32x+log5x,则f(-$\frac{1}{5}$)等于(  )
A.-1B.3C.1D.-3

查看答案和解析>>

同步练习册答案