精英家教网 > 高中数学 > 题目详情
16.对于?x,y∈[0,$\frac{π}{2}$],使y≤sinx的取值的概率是(  )
A.$\frac{4}{{π}^{2}}$B.$\frac{2}{π}$C.$\frac{1}{2}$D.$\frac{2}{{π}^{2}}$

分析 由题意,首先求出满足y≤sinx的x范围,利用对应的区域的面积比求概率即可.

解答 解:对于?x,y∈[0,$\frac{π}{2}$],定义区域的面积为$\frac{{π}^{2}}{4}$,而使y≤sinx的取值的区域的面积为${∫}_{0}^{\frac{π}{2}}sinxdx$=1,
由几何概型的公式得到所求概率是$\frac{1}{\frac{{π}^{2}}{4}}=\frac{4}{{π}^{2}}$;
故选:A.

点评 本题考查了几何概型的概率求法;关键是明确几何测度为区域的面积,利用面积比求得概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.函数f(x)=2sin(2x+$\frac{π}{6}$)+a+1(a∈R,a为常数),f(x)在[-$\frac{π}{6}$,$\frac{5π}{12}$]上的最大值与最小值之和为3.
(1)求f(x)的最小正周期及a的值
(2)求不等式f(x)≥2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x+a$\sqrt{x}$-$\frac{1}{2}$lnx(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线经过点(2,3),求a的值:
(2)若f(x)在区间($\frac{1}{4}$,1)上存在极值点,判断该极值点是极大值点还是极小值点,并求a的取值范围;
(3)若当x>0时,f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列关于正态分布叙述不正确的是(  )
A.正态曲线y=φμ,σ(x)关于直线x=μ对称
B.正态曲线与x轴之间的面积是1
C.正态分布随机变量等于一个特定实数的概率是0
D.正态曲线在对称轴处取得最大值$\frac{1}{\sqrt{2π}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知 a=$(\frac{1}{2}{)^{\frac{1}{3}}}$,b=ln$\frac{1}{3}$,c=log${\;}_{\frac{1}{2}}^{\frac{1}{3}}$,则 a,b,c 的大小关系为(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,边BC=2,A=$\frac{π}{6}$,若AC的长使得该三角形有唯一解,则AC的长的取值范围为(0,2]∪{4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为hi(i=1,2,3,4),若$\frac{a_1}{1}=\frac{a_2}{2}=\frac{a_3}{3}=\frac{a_4}{4}$=k,则h1+2h2+3h3+4h4=$\frac{2S}{k}$.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若$\frac{S_1}{1}=\frac{S_2}{2}=\frac{S_3}{3}=\frac{S_4}{4}$=K,则H1+2H2+3H3+4H4等于(  )
A.$\frac{V}{2K}$B.$\frac{2V}{K}$C.$\frac{V}{3K}$D.$\frac{3V}{K}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=lnx-4x+1的递增区间为(  )
A.($\frac{1}{4}$,+∞)B.(0,4)C.(0,$\frac{1}{4}$)D.(-∞,$\frac{1}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(  )
A.243B.252C.261D.352

查看答案和解析>>

同步练习册答案