精英家教网 > 高中数学 > 题目详情
11.已知 a=$(\frac{1}{2}{)^{\frac{1}{3}}}$,b=ln$\frac{1}{3}$,c=log${\;}_{\frac{1}{2}}^{\frac{1}{3}}$,则 a,b,c 的大小关系为(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵a=$(\frac{1}{2}{)^{\frac{1}{3}}}$∈(0,1),b=ln$\frac{1}{3}$<0,c=log${\;}_{\frac{1}{2}}^{\frac{1}{3}}$=log23>1,
则 a,b,c 的大小关系为c>a>b.
故选:C.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(2cos$\frac{ωx}{2}$,$\sqrt{3}$sin$\frac{ωx}{2}$),$\overrightarrow{b}$=(cos$\frac{ωx}{2}$,2cos$\frac{ωx}{2}$),(ω>0),设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,且f(x)的最小正周期为π.
(1)求函数f(x)的表达式;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某公司为了解用户对其产品的满意度,随机调查了一些用户,得到了满意度评分的茎叶图,则这组评分数据的中位数是81.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2log2(2x+1)-x.
(1)求证:f(x)是偶函数:
(2)设以g(x)=2f(x)+x+m•2x,x∈[0,log23],是否存在实数m,使得g(x)的最小值为0,若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某公司推销一种商品,其广告费支出x与销售额y(单位:万元)之间有如下对应数据,
x24568
y3040m5070
根据表中提供的全部数据,用最小二乘法得出$\stackrel{∧}{y}$与x的线性回归方程为$\stackrel{∧}{y}$=6.5x+15.5,则表中m的值为(  )
A.45B.50C.55D.60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于?x,y∈[0,$\frac{π}{2}$],使y≤sinx的取值的概率是(  )
A.$\frac{4}{{π}^{2}}$B.$\frac{2}{π}$C.$\frac{1}{2}$D.$\frac{2}{{π}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对于函数y=f(x),x∈A,若同时满足以下条件:①f(x)在A上单调递增或单调递减;②存在区间[a,b]⊆A(a<b且ab≠0),使f(x)在区间[a,b]上的值域也是区间[a,b],则称y=f(x)是闭函数.
(I)求闭函数f(x)=x3符合条件的区间[a,b];
(2)若函数y=k+$\sqrt{x+4}$是闭函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=(ax+1-a)e-x+(a-1),其中a≥0
(Ⅰ)讨论f(x)在(0,+∞)上的单调性
(Ⅱ)若x≥0,[(a-1)x+1]ex≤ax+1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C1:x2+y2=4,点N是曲线C1上的动点.
(1)已知定点M(-3,4),动点P满足$\overrightarrow{OP}=\overrightarrow{OM}+\overrightarrow{ON}$,求动点P的轨迹方程;
(2)设点A为曲线C1与x轴的正半轴交点,将A沿逆时针旋转$\frac{2π}{3}$得到点B,点N在曲线C1上运动,若$\overrightarrow{ON}=m\overrightarrow{OA}+n\overrightarrow{OB}$,求m+n的最大值.

查看答案和解析>>

同步练习册答案