分析 (I)利用数列递推关系可得an,利用等比数列的通项公式即可得出bn.
(II)利用“错位相减法”、等比数列的求和公式可得Tn,再利用数列的单调性即可证明.
解答 (I)解:∵${S_n}={n^2}+2n$,当$n≥2,{S_{n-1}}={(n-1)^2}+2(n-1)$,
则 an=Sn-Sn-1=2n+1,当n=1时,a1=3,适合上式,∴an=2n+1.
设正项等比数列{bn}的公比为q(q>0),
∵b4=2b2+b3,∴${b_2}{q^2}=2{b_2}+{b_2}q$,q2-q-2=0,
∴q=2,q=-1(舍去)b1=a1-1=3-1=2,∴${b_n}=2•{2^{n-1}}={2^n}$.
(Ⅱ)证明:∵${c_n}=\frac{a_n}{b_n}=\frac{2n+1}{2^n}$${T_n}=3•\frac{1}{2}+5•\frac{1}{2^2}+7•\frac{1}{2^3}+…+(2n+1)•\frac{1}{2^n}$,
$\frac{1}{2}{T_n}=3•\frac{1}{2^2}+5•\frac{1}{2^3}+…+(2n-1)•\frac{1}{2^n}+(2n+1)•\frac{1}{{{2^{n+1}}}}$,
两式相减得${T_n}=5-\frac{2}{{{2^{n-1}}}}-\frac{2n+1}{2^n}=5-\frac{2n+5}{2^n}$,
∵$\frac{2n+5}{2^n}>0$,∴${T_n}=5-\frac{2n+5}{2^n}<5$,
又∵${T_{n+1}}-{T_n}=5-\frac{2n+7}{{{2^{n+1}}}}-5+\frac{2n+5}{2^n}=\frac{2n+3}{{{2^{n+1}}}}>0$,∴Tn+1>Tn,
∴Tn是一个增函数,∴${T_n}≥{T_1}=\frac{3}{2}$,
综上 $\frac{3}{2}≤{T_n}<5$.
点评 本题考查了数列递推关系、等比数列的通项公式与求和公式、“错位相减法”、数列的单调性,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $A_5^2-2$条 | B. | $A_6^2$条 | C. | $A_6^2-2A_5^1$条 | D. | $A_5^2+2$条 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com