精英家教网 > 高中数学 > 题目详情
2.求值或化简
(1)求值:sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
(2)已知α是第三角限的角,化简$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$.

分析 (1)利用诱导公式及特殊角的三角函数,即可得出结论;
(2)利用同角三角函数关系,可得结论.

解答 解:(1)原式=($\frac{\sqrt{3}}{2}$)2-1+1-($\frac{\sqrt{3}}{2}$)2-$\frac{1}{2}$=-$\frac{1}{2}$;       
(2)原式=$\frac{1+sinα}{|cosα|}$-$\frac{1-sinα}{|cosα|}$=$\frac{2sinα}{-cosα}$=-2tanα.

点评 本题考查诱导公式及特殊角的三角函数,考查同角三角函数关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知全集U=R,函数$f(x)=\sqrt{1-{2^x}}$的定义域为M,则∁UM=(  )
A.(-∞,0]B.(0,+∞)C.(-∞,0)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和${S_n}={n^2}+2n$,正项等比数列{bn}满足:b1=a1-1,且b4=2b2+b3
(I)求数列{an}和{bn}的通项公式.
(Ⅱ)若数列{cn}满足:${c_n}=\frac{a_n}{b_n}$,其前n项和为Tn,证明:$\frac{3}{2}≤{T_n}<5$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,A1C1⊥B1D,BC=1,AD=AA1=3.
(Ⅰ)证明:平面ACD1⊥平面B1BDD1
(Ⅱ)(1)求点B1到平面ACD1的距离;
(2)求直线B1C1与平面ACD1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线$\frac{x^2}{36}$-$\frac{y^2}{45}$=1,如果此双曲线右支上一点P与焦点F1的距离为16,则点P与焦点F2的距离为(  )
A.4B.28C.12D.26

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是(  )
A.①②③B.②③C.①②④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.z=$\frac{5i}{1+2i}$(i是虚数单位),则z的共轭复数为(  )
A.2-iB.2+iC.-2-iD.-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=($\frac{1}{2}$)0.1,b=30.1,c=(-$\frac{1}{2}$)3,则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列图象中,表示y是x的函数的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案