【题目】已知椭圆的离心率为,若椭圆与圆相交于两点,且圆在椭圆内的弧长为.
(1)求的值;
(2)过椭圆的中心作两条直线交椭圆于和四点,设直线的斜率为, 的斜率为,且.
①求直线的斜率;
②求四边形面积的取值范围.
【答案】(1) ;(2)①. ;②. .
【解析】试题分析:(1)先求出的坐标,再利用离心率、点在椭圆上进行求解;(2)①设出直线方程,联立直线和椭圆的方程,得到关于的一元二次方程,利用判别式、根与系数的关系、斜率公式进行求解;②利用弦长公式和点到直线的距离公式进行求解.
试题解析:(1)由圆在椭圆内的弧长为,则该弧所对的圆心角为, 的坐标分别为,设,由可得, ∴,
则椭圆方程可记为代入得, ∴,
∵, ∴;
(2)①由(1)知椭圆方程可记为,由题意知直线的斜率显然存在
直线的方程为: ,设,联立,
消去,可得,
,即, ,
,
∵, ∴,即, ∴;
②,
到直线的距离,
四边形面积,
∵,
∴四边形面积.
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知菱形ABCD如图(1)所示,其中∠ACD=60°,AB=2,AC与BD相交于点O,现沿AC进行翻折,使得平面ACD⊥平面ABC,取点E,连接AE,BE,CE,DE,使得线段BE再平面ABC内的投影落在线段OB上,得到的图形如图(2)所示,其中∠OBE=60°,BE=2.
(Ⅰ)证明:DE⊥AC;
(Ⅱ)求二面角A﹣BE﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知曲线C1的参数方程为 (φ为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=sinθ.
(Ⅰ)求曲线C1的极坐标方程及曲线C2的直角坐标方程;
(Ⅱ)已知曲线C1 , C2交于O,A两点,过O点且垂直于OA的直线与曲线C1 , C2交于M,N两点,求|MN|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin(ω>0)的最小正周期为π.
(1)求函数f(x)的单调增区间;
(2)将函数f(x)的图象向左平移个单位长度,再向上平移1个单位长度,得到函数y=g(x)的图象.求y=g(x)在区间[0,10π]上零点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,左顶点为,过原点且斜率不为0的直线与椭圆交于两点,其中点在第二象限,过点作轴的垂线交于点.
⑴求椭圆的标准方程;
⑵当直线的斜率为时,求的面积;
⑶试比较与大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com