【题目】已知函数
,其中a >2.
(I)讨论函数f(x)的单调性;
(II)若对于任意的
,恒有
,求a的取值范围.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知直线
:
(
为参数).以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的直角坐标方程;
(2)设点
的直角坐标为
,直线
与曲线
的交点为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为
,点
的坐标为
,点
在抛物线
上,且满足
,(
为坐标原点).
(1)求抛物线
的方程;
(2)过点
作斜率乘积为1的两条不重合的直线
,且
与抛物线
交于
两点,
与抛物线
交于
两点,线段
的中点分别为
,求证:直线
过定点,并求出定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.长沙某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了5个城市(总人数、经济发展情况、消费能力等方面比较接近)采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价
:(单位:元/月)和购买人数
(单位:万人)的关系如表:
![]()
(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合
与
的关系?并指出是正相关还是负相关;
(2)①求出
关于
的回归方程;
②若该通信公司在一个类似于试点的城市中将这款流量包的价格定位25元/ 月,请用所求回归方程预测长沙市一个月内购买该流量包的人数能否超过20 万人.
参考数据:
,
,
.
参考公式:相关系数
,回归直线方程
,
其中
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,点
,
是圆上一动点,点
在线段
上,点
在半径
上,且满足
.
(1)当
在圆上运动时,求点
的轨迹
的方程;
(2)设过点
的直线
与轨迹
交于点
(
不在
轴上),垂直于
的直线交
于点
,与
轴交于点
,若
,求点
横坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com