精英家教网 > 高中数学 > 题目详情
如图,在长方体ABCD-A1B1C1D1中,E、H分别是棱A1B1,D1C1上的点(点E与B1不重合),且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G
(Ⅰ)证明:AD∥平面EFGH
(Ⅱ)设AB=2AA1=2a,在长方体ABCD-A1B1C1D1内随机选取一点,记该点取自于几何体A1ABFE-D1DCGH内的概率为p,当点E、F分别在棱A1B1,B1B上运动且满足EF=a时,求p的最小值.
考点:直线与平面平行的判定,几何概型
专题:综合题,空间位置关系与距离,概率与统计
分析:(Ⅰ)证明AD∥平面EFGH,只需证明AD∥EH;
(Ⅱ)根据几何槪型的概率公式,结合基本不等式求出取自于几何体A1ABFE-D1DCGH内的概率为p的最小值,即可求出概率.
解答: (Ⅰ)证明:∵AD∥A1D1,EH∥A1D1
∴AD∥EH,
∵AD?平面EFGH,EH?平面EFGH
∴AD∥平面EFGH;
(Ⅱ)解:根据几何槪型的概率公式可知,点取自于几何体A1ABFE-D1DCGH内的概率为P=
VA1ABFE-D1DCGH
VABCD-A1B1C1D1

∴若p最小,则只需几何体A1ABFE-D1DCGH的体积最小,即五边形A1ABFE的面积最小,等价为三角形EFB1的面积最大,
∵EF=a,
B1E2+B1F2=a2
则S△B1EF=
1
2
B1E•B1F
1
4
(B1E2+B1F2)=
a2
4
,当且仅当B1F=B1E时取等号,
此时五边形A1ABFE的面积最小为2a2-
a2
4
=
7a2
4

则取自于几何体A1ABFE-D1DCGH内的概率为P=
VA1ABFE-D1DCGH
VABCD-A1B1C1D1
=
7
8
点评:本题主要考查线面平行,考查几何槪型的概率计算,根据体积槪型结合基本不等式求出最值是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

根据如图所示的程序框图,将输出的x、y值依次分别记为x1,x2,…,xn,…,x2007;y1,y2,…,yn…,y2007
(1)求数列{xn}的通项公式xn
(2)写出y1,y2,y3,y4,由此猜想出数列{yn}的一个通项公式yn,并证明你的结论.
(3)若zn=x1y1+x2y2+…+xnyn,求zn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

同时抛掷4枚均匀的硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ.
(Ⅰ)求抛掷4枚硬币,恰好2枚正面向上,2枚反面向上的概率;
(Ⅱ)求ξ的数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一条曲线C在y轴右边,C上每一点到点F(
1
2
,0)的距离减去它到y轴距离的差都是
1
2

(1)求曲线C的方程;
(2)P是曲线C上的动点,点B,C在y轴上,圆(x-1)2+y2=1内切于△PBC,求△PBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C:y2=4x,直线l过点P(0,1),若直线l与抛物线C只有一个公共点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
若由资料可知y对x呈线性相关关系(
n
i=1
xi2=90,
n
i=1
xiyi=112.3)
(1)画出x与y的散点图;
(2)试求x与y线性回归方程;
(3)估计使用年限为10年时,维修费用大约是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

记等比数列{an}的前n项积为Tn(n∈N+),已知am-1am+1-2am=0,且T2m-1=512,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程x2cosα-y2sinα+2=0表示一个椭圆,则圆(x+cosα)2+(y+sinα)2=1的圆心在第
 
象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x+1)-f(x)=2,f(1)=1,则f(x)=
 

查看答案和解析>>

同步练习册答案