精英家教网 > 高中数学 > 题目详情
20.如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD.

(I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;
(II)证明:平面PAB⊥平面PBD.

分析 (I)M为PD的中点,直线CM∥平面PAB.取AD的中点E,连接CM,ME,CE,则ME∥PA,证明平面CME∥平面PAB,即可证明直线CM∥平面PAB;
(II)证明:BD⊥平面PAB,即可证明平面PAB⊥平面PBD.

解答 证明:(I)M为PD的中点,直线CM∥平面PAB.

取AD的中点E,连接CM,ME,CE,则ME∥PA,
∵ME?平面PAB,PA?平面PAB,
∴ME∥平面PAB.
∵AD∥BC,BC=AE,
∴ABCE是平行四边形,
∴CE∥AB.
∵CE?平面PAB,AB?平面PAB,
∴CE∥平面PAB.
∵ME∩CE=E,
∴平面CME∥平面PAB,
∵CM?平面CME,
∴CM∥平面PAB
若M为AD的中点,连接CM,
由四边形ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD.
可得四边形ABCM为平行四边形,即有CM∥AB,
CM?平面PAB,AB?平面PAB,
∴CM∥平面PAB;
(II)∵PA⊥CD,∠PAB=90°,AB与CD相交,
∴PA⊥平面ABCD,
∵BD?平面ABCD,
∴PA⊥BD,
由(I)及BC=CD=$\frac{1}{2}$AD,可得∠BAD=∠BDA=45°,
∴∠ABD=90°,∴BD⊥AB,
∵PA∩AB=A,
∴BD⊥平面PAB,
∵BD?平面PBD,
∴平面PAB⊥平面PBD.

点评 本题主要考查了直线与平面平行的判定,平面与平面垂直的判定,考查空间想象能力、运算能力和推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设数列A:a1,a2,…,aN (N≥2).如果对小于n(2≤n≤N)的每个正整数k都有ak<an,则称n是数列A的一个“G时刻”,记G(A)是数列A的所有“G时刻”组成的集合.
(Ⅰ)对数列A:-2,2,-1,1,3,写出G(A)的所有元素;
(Ⅱ)证明:若数列A中存在an使得an>a1,则G(A)≠∅;
(Ⅲ)证明:若数列A满足an-an-1≤1(n=2,3,…,N),则G(A)的元素个数不小于aN-a1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为3.
 

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛物线y2=4x的焦点坐标是(  )
A.(0,2)B.(0,1)C.(2,0)D.(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设直线l1,l2分别是函数f(x)=$\left\{\begin{array}{l}{-lnx,0<x<1}\\{lnx,x>1}\end{array}\right.$图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是(  )
A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(  )
A.24B.48C.60D.72

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P′($\frac{y}{{x}^{2}+{y}^{2}}$,$\frac{-x}{{x}^{2}+{y}^{2}}$);当P是原点时,定义P的“伴随点“为它自身,平面曲线C上所有点的“伴随点”所构成的曲线C′定义为曲线C的“伴随曲线”.现有下列命题:
①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A;
②单位圆的“伴随曲线”是它自身;
③若曲线C关于x轴对称,则其“伴随曲线”C′关于y轴对称;
④一条直线的“伴随曲线”是一条直线.
其中的真命题是②③(写出所有真命题的序列).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>$\sqrt{3}$)的右焦点为F,右顶点为A.已知$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$,其中O为原点,e为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴于点H,若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是(  )
A.B.$\frac{9π}{2}$C.D.$\frac{32π}{3}$

查看答案和解析>>

同步练习册答案