精英家教网 > 高中数学 > 题目详情
9.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>$\sqrt{3}$)的右焦点为F,右顶点为A.已知$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$,其中O为原点,e为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴于点H,若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.

分析 (1)由题意画出图形,把|OF|、|OA|、|FA|代入$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$,转化为关于a的方程,解方程求得a值,则椭圆方程可求;
(2)由已知设直线l的方程为y=k(x-2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,得$\overrightarrow{BF}•\overrightarrow{HF}=(1-{x}_{1},-{y}_{1})•(1,-{y}_{H})=0$,整理得到M的坐标与k的关系,由∠MOA≤∠MAO,得到x0≥1,转化为关于k的不等式求得k的范围.

解答 解:(1)由$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$,得$\frac{1}{\sqrt{{a}^{2}-3}}+\frac{1}{a}=\frac{3•\frac{\sqrt{{a}^{2}-3}}{a}}{a-\sqrt{{a}^{2}-3}}$,
即$\frac{a+\sqrt{{a}^{2}-3}}{a•\sqrt{{a}^{2}-3}}=\frac{3\sqrt{{a}^{2}-3}}{a(a-\sqrt{{a}^{2}-3})}$,
∴a[a2-(a2-3)]=3a(a2-3),解得a=2.
∴椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)由已知设直线l的方程为y=k(x-2),(k≠0),
设B(x1,y1),M(x0,k(x0-2)),
∵∠MOA≤∠MAO,
∴x0≥1,
再设H(0,yH),
联立$\left\{\begin{array}{l}{y=k(x-2)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得(3+4k2)x2-16k2x+16k2-12=0.
△=(-16k22-4(3+4k2)(16k2-12)=144>0.
由根与系数的关系得$2{x}_{1}=\frac{16{k}^{2}-12}{3+4{k}^{2}}$,
∴${x}_{1}=\frac{8{k}^{2}-6}{3+4{k}^{2}}$,${y}_{1}=k({x}_{1}-2)=\frac{-12k}{3+4{k}^{2}}$,
MH所在直线方程为$y-k({x}_{0}-2)=-\frac{1}{k}(x-{x}_{0})$,
令x=0,得${y}_{H}=(k+\frac{1}{k}){x}_{0}-2k$,
∵BF⊥HF,
∴$\overrightarrow{BF}•\overrightarrow{HF}=(1-{x}_{1},-{y}_{1})•(1,-{y}_{H})=0$,
即1-x1+y1yH=$1-\frac{8{k}^{2}-6}{3+4{k}^{2}}-\frac{12k}{3+4{k}^{2}}[(k+\frac{1}{k}){x}_{0}-2k]=0$,
整理得:${x}_{0}=\frac{9+20{k}^{2}}{12({k}^{2}+1)}≥1$,即8k2≥3.≤
∴$k≤-\frac{\sqrt{6}}{4}$或$k≥\frac{\sqrt{6}}{4}$.

点评 本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.≤

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(x-2)ex+a(x-1)2
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD.

(I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;
(II)证明:平面PAB⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,若AB=$\sqrt{13}$,BC=3,∠C=120°,则AC=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若四个数9,x,y,243成等比数列,则x=27,y=81.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合A={0,2,4,6,8,10},B={4,8},则∁AB=(  )
A.{4,8}B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{|x|,x≤0}\end{array}\right.$,则f(f(-9))=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC中,角A、B、C所对的边分别为a、b、c,且2acosB=3b-2bcosA.
(1)求$\frac{b}{c}$的值;
(2)设AB的中垂线交BC于D,若cos∠ADC=$\frac{17}{32}$,b=2,求△ABC的面积.

查看答案和解析>>

同步练习册答案