精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{|x|,x≤0}\end{array}\right.$,则f(f(-9))=2.

分析 根据已知中分段函数的解析式,代入可得函数的值.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{|x|,x≤0}\end{array}\right.$,
∴f(-9)=9,
∴f(f(-9))=f(9)=log39=2,
故答案为:2

点评 本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.抛物线y2=4x的焦点坐标是(  )
A.(0,2)B.(0,1)C.(2,0)D.(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>$\sqrt{3}$)的右焦点为F,右顶点为A.已知$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$,其中O为原点,e为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴于点H,若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=sinx-$\sqrt{3}$cosx的图象可由函数y=2sinx的图象至少向右平移$\frac{π}{3}$个单位长度得到.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设$\overrightarrow{i}$,$\overrightarrow{j}$是两个不共线的向量,若$\overrightarrow{AB}$=2$\overrightarrow{i}$-3$\overrightarrow{j}$,$\overrightarrow{BC}$=-3$\overrightarrow{i}$+$\overrightarrow{j}$,$\overrightarrow{DC}$=3$\overrightarrow{i}$+6$\overrightarrow{j}$,则(  )
A.A、B、C三点共线B.A、B、D三点共线C.A、C、D三点共线D.B、C、D三点共线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=(  )
A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是(  )
A.B.$\frac{9π}{2}$C.D.$\frac{32π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是(  )
A.①和②均为真命题B.①和②均为假命题
C.①为真命题,②为假命题D.①为假命题,②为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,B=$\frac{π}{4}$,BC边上的高等于$\frac{1}{3}$BC,则cosA=(  )
A.$\frac{3\sqrt{10}}{10}$B.$\frac{\sqrt{10}}{10}$C.-$\frac{\sqrt{10}}{10}$D.-$\frac{3\sqrt{10}}{10}$

查看答案和解析>>

同步练习册答案