精英家教网 > 高中数学 > 题目详情
7.设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是(  )
A.①和②均为真命题B.①和②均为假命题
C.①为真命题,②为假命题D.①为假命题,②为真命题

分析 ①不成立.可举反例:f(x)=$\left\{\begin{array}{l}{2x,x≤1}\\{-x+3,x>1}\end{array}\right.$.g(x)=$\left\{\begin{array}{l}{2x+3,x≤0}\\{-x+3,0<x<1}\\{2x,x≥1}\end{array}\right.$,h(x)=$\left\{\begin{array}{l}{-x,x≤0}\\{2x,x>0}\end{array}\right.$.
②由题意可得:f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),可得:g(x)=g(x+T),h(x)=h(x+T),f(x)=f(x+T),即可判断出真假.

解答 解:①不成立.可举反例:f(x)=$\left\{\begin{array}{l}{2x,x≤1}\\{-x+3,x>1}\end{array}\right.$.g(x)=$\left\{\begin{array}{l}{2x+3,x≤0}\\{-x+3,0<x<1}\\{2x,x≥1}\end{array}\right.$,h(x)=$\left\{\begin{array}{l}{-x,x≤0}\\{2x,x>0}\end{array}\right.$.
②∵f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),
前两式作差可得:g(x)-h(x)=g(x+T)-h(x+T),结合第三式可得:g(x)=g(x+T),h(x)=h(x+T),同理可得:f(x)=f(x+T),因此②正确.
故选:D.

点评 本题考查了函数的单调性与周期性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在△ABC中,若AB=$\sqrt{13}$,BC=3,∠C=120°,则AC=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{|x|,x≤0}\end{array}\right.$,则f(f(-9))=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,⊙O中$\widehat{AB}$的中点为P,弦PC,PD分别交AB于E,F两点.
(1)若∠PFB=2∠PCD,求∠PCD的大小;
(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.方程3sinx=1+cos2x在区间[0,2π]上的解为$\frac{π}{6}$或$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A,B,C分别为△ABC的三边a,b,c所对的角,($\sqrt{3}$+1)a+2ccosA=2csinA+2b.
(1)求角C的值;
(2)若C<$\frac{π}{4}$,c=2($\sqrt{6}$-$\sqrt{2}$),且△ABC的面积为4,求a、b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC中,角A、B、C所对的边分别为a、b、c,且2acosB=3b-2bcosA.
(1)求$\frac{b}{c}$的值;
(2)设AB的中垂线交BC于D,若cos∠ADC=$\frac{17}{32}$,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=a(x-lnx)+$\frac{2x-1}{{x}^{2}}$,a∈R.
(I)讨论f(x)的单调性;
(II)当a=1时,证明f(x)>f′(x)+$\frac{3}{2}$对于任意的x∈[1,2]成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.无穷数列{an}由k个不同的数组成,Sn为{an}的前n项和,若对任意n∈N*,Sn∈{2,3},则k的最大值为4.

查看答案和解析>>

同步练习册答案