| A. | ①和②均为真命题 | B. | ①和②均为假命题 | ||
| C. | ①为真命题,②为假命题 | D. | ①为假命题,②为真命题 |
分析 ①不成立.可举反例:f(x)=$\left\{\begin{array}{l}{2x,x≤1}\\{-x+3,x>1}\end{array}\right.$.g(x)=$\left\{\begin{array}{l}{2x+3,x≤0}\\{-x+3,0<x<1}\\{2x,x≥1}\end{array}\right.$,h(x)=$\left\{\begin{array}{l}{-x,x≤0}\\{2x,x>0}\end{array}\right.$.
②由题意可得:f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),可得:g(x)=g(x+T),h(x)=h(x+T),f(x)=f(x+T),即可判断出真假.
解答 解:①不成立.可举反例:f(x)=$\left\{\begin{array}{l}{2x,x≤1}\\{-x+3,x>1}\end{array}\right.$.g(x)=$\left\{\begin{array}{l}{2x+3,x≤0}\\{-x+3,0<x<1}\\{2x,x≥1}\end{array}\right.$,h(x)=$\left\{\begin{array}{l}{-x,x≤0}\\{2x,x>0}\end{array}\right.$.
②∵f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),
前两式作差可得:g(x)-h(x)=g(x+T)-h(x+T),结合第三式可得:g(x)=g(x+T),h(x)=h(x+T),同理可得:f(x)=f(x+T),因此②正确.
故选:D.
点评 本题考查了函数的单调性与周期性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com