精英家教网 > 高中数学 > 题目详情
17.在△ABC中,若AB=$\sqrt{13}$,BC=3,∠C=120°,则AC=(  )
A.1B.2C.3D.4

分析 直接利用余弦定理求解即可.

解答 解:在△ABC中,若AB=$\sqrt{13}$,BC=3,∠C=120°,
AB2=BC2+AC2-2AC•BCcosC,
可得:13=9+AC2+3AC,
解得AC=1或AC=-4(舍去).
故选:A.

点评 本题考查三角形的解法,余弦定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.△ABC的内角A、B、C的对边分别为a、b、c.已知a=$\sqrt{5}$,c=2,cosA=$\frac{2}{3}$,则b=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛物线y2=4x的焦点坐标是(  )
A.(0,2)B.(0,1)C.(2,0)D.(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(  )
A.24B.48C.60D.72

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P′($\frac{y}{{x}^{2}+{y}^{2}}$,$\frac{-x}{{x}^{2}+{y}^{2}}$);当P是原点时,定义P的“伴随点“为它自身,平面曲线C上所有点的“伴随点”所构成的曲线C′定义为曲线C的“伴随曲线”.现有下列命题:
①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A;
②单位圆的“伴随曲线”是它自身;
③若曲线C关于x轴对称,则其“伴随曲线”C′关于y轴对称;
④一条直线的“伴随曲线”是一条直线.
其中的真命题是②③(写出所有真命题的序列).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(x2-$\frac{1}{x}$)8的展开式中x7的系数为-56(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>$\sqrt{3}$)的右焦点为F,右顶点为A.已知$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$,其中O为原点,e为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴于点H,若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=sinx-$\sqrt{3}$cosx的图象可由函数y=2sinx的图象至少向右平移$\frac{π}{3}$个单位长度得到.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是(  )
A.①和②均为真命题B.①和②均为假命题
C.①为真命题,②为假命题D.①为假命题,②为真命题

查看答案和解析>>

同步练习册答案