精英家教网 > 高中数学 > 题目详情
2.△ABC中,角A、B、C所对的边分别为a、b、c,且2acosB=3b-2bcosA.
(1)求$\frac{b}{c}$的值;
(2)设AB的中垂线交BC于D,若cos∠ADC=$\frac{17}{32}$,b=2,求△ABC的面积.

分析 (1)根据正弦定理、两角和的正弦公式化简已知的式子,再由正弦定理求出$\frac{b}{c}$的值;
(2)根据条件和二倍角的余弦公式求出sinB的值,由平方关系求出cosB的值,由余弦定理求出a,由条件进行取舍,代入三角形的面积公式求出△ABC的面积.

解答 解:(1)∵2acosB=3b-2bcosA,
∴2sinAcosB=3sinB-2sinBcosA
∴2sin(A+B)=3sinB,则2sinC=3sinB,
由正弦定理得,$\frac{b}{c}$=$\frac{sinB}{sinC}$=$\frac{2}{3}$;
(2)∵AB的中垂线交BC于D,∴DA=DB,则∠B=∠BAD,
∴∠ADC=∠B+∠BAD=2∠B,
∵cos∠ADC=$\frac{17}{32}$,∴cos∠ADC=1-2sin2B=$\frac{17}{32}$,
解得sinB=$\frac{\sqrt{15}}{8}$,
由B是锐角得,cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{7}{8}$,
∵在△ABC中,b=2,且$\frac{b}{c}$=$\frac{2}{3}$,∴c=3,
由余弦定理得,b2=a2+c2-2accosB,
∴$4={a}^{2}+9-2×3×a×\frac{7}{8}$,解得a=4或$\frac{5}{4}$,
∵BD=$\frac{\frac{3}{2}}{cosB}$=$\frac{12}{7}$>$\frac{5}{4}$,∴a=$\frac{5}{4}$舍去,
∴△ABC的面积S=$\frac{1}{2}acsinB$=$\frac{1}{2}×4×3×\frac{\sqrt{15}}{8}$=$\frac{3\sqrt{15}}{4}$.

点评 本题考查了正弦、余弦定理,两角和的正弦公式,三角形的面积公式的应用,注意结合条件进行取舍以及边角的转化,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>$\sqrt{3}$)的右焦点为F,右顶点为A.已知$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$,其中O为原点,e为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴于点H,若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是(  )
A.B.$\frac{9π}{2}$C.D.$\frac{32π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是(  )
A.①和②均为真命题B.①和②均为假命题
C.①为真命题,②为假命题D.①为假命题,②为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设10x=3,10y=4.
(1)10x+2y=48.
(2)${10}^{-\frac{y}{2}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=cosx-sinx(x∈R),下列说法错误的是(  )
A.函数f(x)的最小正周期是2πB.函数f(x)在定义域内是奇函数
C.函数f(x)在区间[0,$\frac{π}{2}$]上是减函数D.函数f(x)的图象关于直线x=-$\frac{π}{4}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.
(Ⅰ)证明:AC⊥HD′;
(Ⅱ)若AB=5,AC=6,AE=$\frac{5}{4}$,OD′=2$\sqrt{2}$,求五棱锥D′-ABCFE体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,B=$\frac{π}{4}$,BC边上的高等于$\frac{1}{3}$BC,则cosA=(  )
A.$\frac{3\sqrt{10}}{10}$B.$\frac{\sqrt{10}}{10}$C.-$\frac{\sqrt{10}}{10}$D.-$\frac{3\sqrt{10}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.盒子中有2个白球,3个红球,从中任取两个球,则至少有一个白球的概率为(  )
A.$\frac{2}{5}$B.$\frac{2}{3}$C.$\frac{3}{5}$D.$\frac{7}{10}$

查看答案和解析>>

同步练习册答案