精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=cosx-sinx(x∈R),下列说法错误的是(  )
A.函数f(x)的最小正周期是2πB.函数f(x)在定义域内是奇函数
C.函数f(x)在区间[0,$\frac{π}{2}$]上是减函数D.函数f(x)的图象关于直线x=-$\frac{π}{4}$对称

分析 利用两角差的余弦公式化简函数的解析式,再利用余弦函数的图象和性质,得出结论.

解答 解:∵函数f(x)=cosx-sinx=$\sqrt{2}$cos(x+$\frac{π}{4}$),故函数f(x)的最小正周期是2π,故A正确;
显然,函数f(x)在定义域内是非奇非偶函数,故B错误;
∵x∈[0,$\frac{π}{2}$],故x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{3π}{4}$],故函数f(x)在区间[0,$\frac{π}{2}$]上是减函数,故C正确;
当x=-$\frac{π}{4}$时,f(x)=$\sqrt{2}$,是最大值,故函数f(x)的图象关于直线x=-$\frac{π}{4}$对称,故D正确,
故选:B.

点评 本题主要考查两角差的余弦公式,余弦函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若四个数9,x,y,243成等比数列,则x=27,y=81.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,⊙O中$\widehat{AB}$的中点为P,弦PC,PD分别交AB于E,F两点.
(1)若∠PFB=2∠PCD,求∠PCD的大小;
(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A,B,C分别为△ABC的三边a,b,c所对的角,($\sqrt{3}$+1)a+2ccosA=2csinA+2b.
(1)求角C的值;
(2)若C<$\frac{π}{4}$,c=2($\sqrt{6}$-$\sqrt{2}$),且△ABC的面积为4,求a、b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC中,角A、B、C所对的边分别为a、b、c,且2acosB=3b-2bcosA.
(1)求$\frac{b}{c}$的值;
(2)设AB的中垂线交BC于D,若cos∠ADC=$\frac{17}{32}$,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\frac{sinx+2}{cosx-2}$的值域为[$\frac{-4-\sqrt{7}}{3}$,$\frac{-4+\sqrt{7}}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=a(x-lnx)+$\frac{2x-1}{{x}^{2}}$,a∈R.
(I)讨论f(x)的单调性;
(II)当a=1时,证明f(x)>f′(x)+$\frac{3}{2}$对于任意的x∈[1,2]成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=acos2x+(a-1)(cosx+1),其中a>0,记|f(x)|的最大值为A.
(Ⅰ)求f′(x);
(Ⅱ)求A;
(Ⅲ)证明:|f′(x)|≤2A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.Sn为数列{an}的前n项和,已知an>0,${a}_{n}^{2}$+an=2Sn+2(n∈N*
(1)求证数列{an}是等差数列并求其通项公式;
(2)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,记{bn}前n项和为Tn,若4032(n+2)Tn<λ(n+1)对任意的n∈N*恒成立,求λ的最小值.

查看答案和解析>>

同步练习册答案