精英家教网 > 高中数学 > 题目详情
12.函数y=$\frac{sinx+2}{cosx-2}$的值域为[$\frac{-4-\sqrt{7}}{3}$,$\frac{-4+\sqrt{7}}{3}$].

分析 可以把函数理解为点(cosx,sinx)到点(2,-2)的直线斜率的范围,利用数形结合的思想,求得过点(2,-2)的直线与单位圆相切时直线的斜率,进而求得函数f(x)的值域.

解答 解:可以把函数理解为点(cosx,sinx)到点(2,-2)的直线斜率的范围,
而(cosx,sinx)的点的集合为以原点为圆心,半径为1的圆,如图:
当过点(2,-2)的直线的斜率不存在时,不与圆相切,
设此直线的方程为y+2=k(x-2),整理得y-kx+2k+2=0,①
圆的方程为x2+y2=1,②
圆心到直线的距离为$\frac{|2k+2|}{\sqrt{1+{k}^{2}}}$=1,整理求得k=$\frac{-4±\sqrt{7}}{3}$,
∴y=$\frac{sinx+2}{cosx-2}$的值域为[$\frac{-4-\sqrt{7}}{3}$,$\frac{-4+\sqrt{7}}{3}$].
故答案为:[$\frac{-4-\sqrt{7}}{3}$,$\frac{-4+\sqrt{7}}{3}$].

点评 本题主要考查了直线与圆的位置关系,三角函数化简求值的问题.考查了学生转化与化归思想的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知集合A={x||x+a|≥a},B={x|x2+mx+n<0}
(1)若a=2,m=4,n=-5,求A∩B,A∪B;
(2)若a>0,A∩B=(-3,-1],且A∪B=R,求a,m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知平行直线l1:2x+y-1=0,l2:2x+y+1=0,则l1,l2的距离$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设a>0,b>0,若$\sqrt{2}$是4a与2b的等比中项,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为(  )
A.1B.2$\sqrt{2}$C.$\frac{3}{2}$+$\sqrt{2}$D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=cosx-sinx(x∈R),下列说法错误的是(  )
A.函数f(x)的最小正周期是2πB.函数f(x)在定义域内是奇函数
C.函数f(x)在区间[0,$\frac{π}{2}$]上是减函数D.函数f(x)的图象关于直线x=-$\frac{π}{4}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1,a14=b4
(1)求{an}的通项公式;
(2)设cn=an+bn,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.
(Ⅰ)求椭圆E的方程及点T的坐标;
(Ⅱ)设O是坐标原点,直线l′平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得|PT|2=λ|PA|•|PB|,并求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知ω=z+i(z∈C,i是虚数单位),且$\frac{z-2}{z+2}$为纯虚数,M=|ω+1|2+|ω-1|2,求M的最大值及取得最大值时ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1-sinA),则A=(  )
A.$\frac{3π}{4}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

同步练习册答案