精英家教网 > 高中数学 > 题目详情
17.已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1,a14=b4
(1)求{an}的通项公式;
(2)设cn=an+bn,求数列{cn}的前n项和.

分析 (1)设{an}是公差为d的等差数列,{bn}是公比为q的等比数列,运用通项公式可得q=3,d=2,进而得到所求通项公式;
(2)求得cn=an+bn=2n-1+3n-1,再由数列的求和方法:分组求和,运用等差数列和等比数列的求和公式,计算即可得到所求和.

解答 解:(1)设{an}是公差为d的等差数列,
{bn}是公比为q的等比数列,
由b2=3,b3=9,可得q=$\frac{{b}_{3}}{{b}_{2}}$=3,
bn=b2qn-2=3•3n-2=3n-1
即有a1=b1=1,a14=b4=27,
则d=$\frac{{a}_{14}-{a}_{1}}{13}$=2,
则an=a1+(n-1)d=1+2(n-1)=2n-1;
(2)cn=an+bn=2n-1+3n-1
则数列{cn}的前n项和为
(1+3+…+(2n-1))+(1+3+9+…+3n-1)=$\frac{1}{2}$n•2n+$\frac{1-{3}^{n}}{1-3}$
=n2+$\frac{{3}^{n}-1}{2}$.

点评 本题考查等差数列和等比数列的通项公式和求和公式的运用,同时考查数列的求和方法:分组求和,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在△ABC中,B=$\frac{π}{4}$,BC边上的高等于$\frac{1}{3}$BC,则sinA=(  )
A.$\frac{3}{10}$B.$\frac{\sqrt{10}}{10}$C.$\frac{\sqrt{5}}{5}$D.$\frac{3\sqrt{10}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x-$\frac{π}{3}$)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,a,b,c分别是角A,B,C的对边,且sin(A+$\frac{π}{3}$)=4sin$\frac{A}{2}$cos$\frac{A}{2}$.
(Ⅰ)求角A的大小;
(Ⅱ)若sinB=$\sqrt{3}$sinC,a=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\frac{sinx+2}{cosx-2}$的值域为[$\frac{-4-\sqrt{7}}{3}$,$\frac{-4+\sqrt{7}}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
(Ⅰ)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(Ⅱ)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|2x-a|+a.
(1)当a=2时,求不等式f(x)≤6的解集;
(2)设函数g(x)=|2x-1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某校计划用系统抽样方法从高一年级500名学生中抽取25名进行调查.首先将这500名学生编号,号码为1~500;接着随机抽取一个号码,抽到的是6号,则本次抽样还将抽到的学生号码是(  )
A.25B.26C.27D.28

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设f(x)=2$\sqrt{3}$sin(π-x)sinx-(sinx-cosx)2
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移$\frac{π}{3}$个单位,得到函数y=g(x)的图象,求g($\frac{π}{6}$)的值.

查看答案和解析>>

同步练习册答案