分析 (Ⅰ)利用三角恒等变换化简f(x)的解析式,再利用正弦函数的单调性,求得函数的增区间.
(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,从而求得g($\frac{π}{6}$)的值.
解答 解:(Ⅰ)∵f(x)=2$\sqrt{3}$sin(π-x)sinx-(sinx-cosx)2 =2$\sqrt{3}$sin2x-1+sin2x=2$\sqrt{3}$•$\frac{1-cos2x}{2}$-1+sin2x
=sin2x-$\sqrt{3}$cos2x+$\sqrt{3}$-1=2sin(2x-$\frac{π}{3}$)+$\sqrt{3}$-1,
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,
可得函数的增区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z.
(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x-$\frac{π}{3}$)+$\sqrt{3}$-1的图象;
再把得到的图象向左平移$\frac{π}{3}$个单位,得到函数y=g(x)=2sinx+$\sqrt{3}$-1的图象,
∴g($\frac{π}{6}$)=2sin$\frac{π}{6}$+$\sqrt{3}$-1=$\sqrt{3}$.
点评 本题主要考查三角恒等变换,正弦函数的单调性,函数y=Asin(ωx+φ)的图象变换规律,求函数的值,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{π}{4}$] | B. | (0,$\frac{π}{3}$] | C. | (0,$\frac{π}{2}$] | D. | ($\frac{π}{2}$,π) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com