精英家教网 > 高中数学 > 题目详情
7.设f(x)=2$\sqrt{3}$sin(π-x)sinx-(sinx-cosx)2
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移$\frac{π}{3}$个单位,得到函数y=g(x)的图象,求g($\frac{π}{6}$)的值.

分析 (Ⅰ)利用三角恒等变换化简f(x)的解析式,再利用正弦函数的单调性,求得函数的增区间.
(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,从而求得g($\frac{π}{6}$)的值.

解答 解:(Ⅰ)∵f(x)=2$\sqrt{3}$sin(π-x)sinx-(sinx-cosx)2 =2$\sqrt{3}$sin2x-1+sin2x=2$\sqrt{3}$•$\frac{1-cos2x}{2}$-1+sin2x
=sin2x-$\sqrt{3}$cos2x+$\sqrt{3}$-1=2sin(2x-$\frac{π}{3}$)+$\sqrt{3}$-1,
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,
可得函数的增区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z.
(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x-$\frac{π}{3}$)+$\sqrt{3}$-1的图象;
再把得到的图象向左平移$\frac{π}{3}$个单位,得到函数y=g(x)=2sinx+$\sqrt{3}$-1的图象,
∴g($\frac{π}{6}$)=2sin$\frac{π}{6}$+$\sqrt{3}$-1=$\sqrt{3}$.

点评 本题主要考查三角恒等变换,正弦函数的单调性,函数y=Asin(ωx+φ)的图象变换规律,求函数的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1,a14=b4
(1)求{an}的通项公式;
(2)设cn=an+bn,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在正四棱柱ABCD-A1B1C1D1中,底面ABCD的边长为3,BD1与底面所成角的大小为arctan$\frac{2}{3}$,则该正四棱柱的高等于2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在50瓶饮料中,有3瓶已经过期,从中任取一瓶,取到已过期饮料的概率是$\frac{3}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1-sinA),则A=(  )
A.$\frac{3π}{4}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知(x+1)2(x+2)2011=a0+a1(x+2)+a2(x+2)2+…+a2013(x+2)2013,求$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{2}^{3}}$+…+$\frac{{a}_{2013}}{{2}^{2013}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,a,b,c分别为角A,B,C所对的边,若a,b,c成等差数列,则角B的取值范围为(  )
A.(0,$\frac{π}{4}$]B.(0,$\frac{π}{3}$]C.(0,$\frac{π}{2}$]D.($\frac{π}{2}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.从1~9这9个数字中任取5个数组成无重复数字的数,且个位、百位、万位上的数字必须是奇数的五位数的个数是1800.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C所对的边分别为a,b,c,且a2+b2=c2+$\sqrt{3}$ab.
(Ⅰ)求角C的值;
(Ⅱ)若b=2,c=1,求△ABC的面积;
(Ⅲ)若△ABC为锐角三角形,且c=1,求$\sqrt{3}$a-b的取值范围.

查看答案和解析>>

同步练习册答案