| A. | (0,$\frac{π}{4}$] | B. | (0,$\frac{π}{3}$] | C. | (0,$\frac{π}{2}$] | D. | ($\frac{π}{2}$,π) |
分析 由a,b,c成等差数列,根据等差数列的性质得到2b=a+c,解出b,然后利用余弦定理表示出cosB,把b的式子代入后,合并化简,利用基本不等式即可求出cosB的最小值,根据B的范围以及余弦函数的单调性,再利用特殊角三角函数值即可求出B的取值范围.
解答 解:由a,b,c成等差数列,得到2b=a+c,即b=$\frac{a+c}{2}$,
则cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-(\frac{a+c}{2})^{2}}{2ac}$=$\frac{3({a}^{2}+{c}^{2})-2ac}{8ac}$≥$\frac{6ac-2ac}{8ac}$=$\frac{1}{2}$,
∵B∈(0,π),且余弦在(0,π)上为减函数,
∴角B的范围是:0<B≤$\frac{π}{3}$,即为:(0,$\frac{π}{3}$].
故选:B.
点评 此题主要考查了等差数列的性质,余弦定理,基本不等式的运用,以及余弦函数的图象与性质在解三角形中的应用,考查了转化思想,熟练掌握余弦定理及等差数列的性质是解本题的关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x=$\frac{3}{4}$ | B. | x=$\frac{π}{2}$ | C. | x=$\frac{π}{4}$ | D. | x=$\frac{π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com